
SECTION 26 05 00

ELECTRICAL GENERAL PROVISIONS

1.1 RELATED DOCUMENTS

- A. Except as modified in this Section, General Conditions, and Supplementary Conditions, applicable provisions of Division 1 General Requirements, and other provisions and requirements of the Contract Documents apply to work of Division 26 Electrical.
- B. Applicable provisions of this section apply to all sections of Division 26, Electrical.

1.2 CODE REQUIREMENTS AND FEES

- A. Perform work in accordance with applicable statutes, ordinances, codes and regulations of governmental authorities having jurisdiction.
- B. Electrical work shall comply with applicable inspection services:
 - 1. Underwriters Laboratories
 - 2. National Fire Protection Association
 - 3. State Health Department
 - 4. Local Municipal Building Inspection Department adopted codes with amendments
 - 5. National Electrical Code with local amendments
 - 6. State Regulatory Agencies
 - 7. Where the project is located outside a municipal jurisdiction, and has no municipal inspection services, the National Electrical Code with amendments of the municipality with extraterritorial jurisdiction shall govern.
 - 8. Where the project is located outside any municipal jurisdiction, including extraterritorial jurisdictions, the National Electrical Code with local adopted amendments of the largest municipality located in the same county or parish shall govern.
 - 9. International Energy Conservation Code
 - 10. National Electrical Safety Code
- C. Resolve any code violations discovered in contract documents with the Engineer prior to award of the contract. After Contract award, any correction or additions necessary for compliance with applicable codes shall be made at no additional cost to the Owner.
- D. This Contractor shall be responsible for being aware of and complying with asbestos NESHAP regulations, as well as all other applicable codes, laws and regulations.
- E. Obtain all permits required.

1.3 CONTRACTOR'S QUALIFICATIONS

- A. An approved contractor for the work under this division shall be:
 - 1. A specialist in this field and have the personnel, experience, training, and skill, and the organization to provide a practical working system.
 - 2. Able to furnish evidence of having contracted for and installed not less than 3 systems of comparable size and type that has served their Owners satisfactorily for not less than 3 years.

1.4 REFERENCE SPECIFICATIONS AND STANDARDS

- A. Materials which are specified by reference to Federal Specifications; ASTM, ASME, ANSI, APWA, or AWWA Specifications; Federal Standards; or other standard specifications must comply with latest editions, revisions, amendments or supplements in effect on date proposals are received. Referenced specifications and standards are minimum requirements for all equipment, material and work. In instances where specified capacities, size or other features of equipment, devices or materials exceed these minimums, meet specified capacities.
- B. Use electrical materials and equipment that is constructed and tested in accordance with the standards of NEMA, ANSI, ASTM, or other recognized commercial standard. If materials and equipment is labeled, listed, or recognized by any Nationally-Recognized Testing Laboratory (NRTL) acceptable to the Occupational Safety and Health Administration (OSHA), then provide NRTL-labeled, listed, or recognized material and equipment. Acceptable NRTLs include but are not limited to:
 - 1. Underwriters Laboratories, Inc. (UL)
 - 2. Factory Mutual Research Corp. (FMRC) (also referred to as "Factory Mutual Global," or "FM Global")
 - 3. Intertek Testing Services NA, Inc. (ITSNA, formerly ETL)
 - 4. Canadian Standards Association (CSA)
 - 5. A complete listing of acceptable NRTLs is published on the OSHA website at http://www.osha.gov/dts/otpca/nrtl/.
- C. Where material and equipment is not labeled, listed, or recognized by any NRTL, provide a manufacturer's Certificate of Compliance indicating complete compliance of each item with applicable standards of NEMA, ANSI, ASTM, or other recognized commercial standard.
- D. Do not install or use electrical material or equipment for any use other than that for which it was designed, labeled, listed, or identified unless formally approved for such use by the Owner's AHJ. This *National Electrical Code*® requirement is re-stated for emphasis.
- E. Codes and Standards applicable to this Division:
 - 1. ANSI American National Standards Institute
 - a. ANSI Z535.1, Safety Colors
 - b. ANSI Z535.2, Environmental and Facility Safety Signs
 - c. ANSI Z535.3, Criteria for Safety Symbols
 - d. ANSI Z535.4, Product Safety Signs and Labels
 - 2. ASHRAE American Society of Heating, Refrigeration, and Air Conditioning Engineers:
 - a. ASHRAE Standard 90.1, Energy Standards for Buildings Except for Low Rise Residential Buildings [ANSI, IESNA]
 - 3. ASTM American Society for Testing and Materials
 - 4. CBM Certified Ballast Manufacturers
 - 5. ICC International Code Council
 - a. International Building Code® (IBC)
 - b. International Existing Building Code® (IEBC)
 - 6. ICEA Insulated Cable Engineers Association
 - a. ICEA S-93-639, Shielded Power Cables 5-46kV (NEMA WC-74)
 - 7. IEEE® Institute of Electronics and Electrical Engineers
 - a. IEEE C2™, National Electrical Safety Code (NESC) [ANSI]
 - b. IEEE Std 141TM, Recommended Practice for Electric Power Distribution for Industrial Plans ("Red Book")
 - c. IEEE Std 143[™], Recommended Practice for Grounding of Industrial and Commercial Power Systems ("Green Book")

- d. IEEE Std 241TM, Recommended Practice for Electric Power Systems in Commercial Buildings ("Gray Book")
- e. IEEE Std 242 [™], Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems ("Buff Book")
- f. IEEE Std 315 [™], Graphic Symbols for Electrical and Electornics Diagrams
- g. IEEE Std 399 [™], Recommended Practice for Power Systems Analysis ("Brown Book")
- h. IEEE Std 446 ^{†M}, Recommended Practice for Emergency and Standby Power Systems for Industrial and Commercial Applications ("Orange Book")
- i. IEE Std 493[™], Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems ("Gold Book")
- j. IEEE Std 519 [™], Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems
- k. IEEE Std 739 [™], Recommended Practice for Energy Management in Industrial and Commercial Facilities ("Bronze Book")
- I. IEEE Std 902 [™], Guide for Maintenance, Operation, and Safety of Industrial and Commercial Power Systems ("Yellow Book")
- m. IEEE Std 1015 [™], Recommended Practice Applying Low-Voltage Circuit Breakers Used in Industrial and Commercial Power Systems ("Blue Book")
- n. IEEE Std 1100™, Recommended Practice for Powering and Grounding Electronic Equipment ("Emerald Book")
- o. IEEE Std 1584 TM, Guide for Performing Arc-Flash Hazard Calculations
- 8. IESNA Illuminating Engineering Society of North America
 - a. IESNA Lighting Handbook, Ninth Edition
 - b. IESNA RP-1, American National Standard Practice for Office Lighting
 - c. IESNA RP-7, American National Standard Practice for Lighting Industrial Facilities
- 9. NECA National Electrical Contractors Association:
 - a. NECA 1, Good Workmanship in Electrical Construction [ANSI]
 - b. NECA 90, Recommended Practice for Commissioning Building Electrical Systems [ANSI]
 - c. NECA 100, Sumbols for Electrical Construction Drawings [ANSI]
 - d. NECA 101, Standard for Installing Steel Conduits (Rigid, IMC, EMT) [ANSI]
 - e. NECA 104, Recommended Practice for Installing Aluminum Building Wire and Cable [ANSI]
 - f. NECA / NEMA 105, Recommended Practice for Installing Metal Cable Tray Systems [ANSI]
 - g. NECA 111, Standard for Installing Nonmetallic Raceways (RNC, ENT, LFNC) [ANSI]
 - h. NECA / NACNA 120, Standard for Installing Armored Cable (Type AC) and Metal-Clad Cable (Type MC)[ANSI]
 - i. NECA 202, Recommended Practice for Installing and Maintaining Industrial Heat Tracing Systems [ANSI]
 - j. NECA 230, Standard for Selecting, Installing and Maintaining Electric Motors and Motor Controllers [ANSI]
 - k. NECA 331, Standard for Building and Service Entrance Grounding and Bonding
 - I. NECA 400, Standard for Installing and Maintaining Switchboards [ANSI]
 - m. NECA 402, Standard for Installing and Maintaining Motor Control Centers [ANSI]
 - n. NECA / EGSA 404, Standard for Installing Generator Sets [ANSI]

- o. NECA 407, Recommended Practice for Installing and Maintaining Panelboards [ANSI]
- p. NECA 408, Recommended Practice for Installing and Maintaining Busways [ANSI]
- q. NECA 409, Recommended Practice for Installing and Maintaining Dry-Type Transformers [ANSI]
- r. NECA 410, Recommended Practice for Installing and Maintaining Liquid-Filled Transformers [ANSI]
- s. NECA 411, Recommended Practice for Installing and Maintaining Uninterruptible Power Supplied (UPS) (ANSI]
- t. NECA 420, Standard for Fuse Applications [ANSI]
- u. NECA 430, Standard for Installing Medium-Voltage Metal-Clad Switchgear [ANSI]
- v. NECA / IESNA 500, Recommended Practice for Installing Indoor Lighting Systems [ANSI]
- w. NECA / IESNA 501, Recommended Practice for Installing Exterior Lighting Systems [ANSI]
- x. NECA / IESNA 502, Recommended Practice for Installing Industrial Lighting Systems [ANSI]
- y. NECA / MACSCB 600, Recommended Practice for Installing and Maintaining Medium-Voltage Cable [ANSI]
- z. NECA / NEMA 605, Installing Underground Nonmetallic Utility Duct [ANSI]
- 10. NEMA National Electrical Manufacturers Association
- 11. NETA International Electrical Testing Association, Inc.:
 - a. NETA ATS, Acceptance Testing Specifications for Electircal Power Distribution Equipment and Systems
 - b. NETA MTS, Maintenance Testing Specifications for Electrical Power Distribution Equipment and Systems
 - c. NETA ETT, Standard for Certification of Electrical Testing Technicians [ANSI]
- 12. NFPA National Fire Protection Association:
 - a. NFPA 20®, Standard for the Installation of Stationary Pumps for Fire Protection®
 - b. NFPA 70[™], National Electrical Code® (NEC®)
 - c. NFPA 70E. Standard for Electrical Safety in the Workplace.
 - d. NFPA 101®, Life Safety Code®
 - e. NFPA 110, Standard for Emergency and Standby Power Systems
 - f. NFPA 111, Standard on Stored Electrical Energy Emergency and Standby Power Systems
 - g. NFPA 780, Standard for the Installation of Lightning Protection Systems
 - h. All other NFPA codes and standards except NFPA 5000
- 13. OSHA Occupational Safety and Health Administration
- 14. IECC International Energy Conservation Code
- 15. ISO International Organization for Standardization
- 16. Texas State Energy Conservation Code
- 17. Applicable County and Municipal Codes

1.5 CONTRACT DRAWINGS

- A. Contract drawings are diagrammatic only and do not give fully dimensioned locations of various elements of work. Determine exact locations from field measurements.
- B. Every effort has been made by the Engineer to indicate wiring of all receptacles, light fixtures, switches, telephone outlets, HVAC equipment, other equipment, elevator equipment, and all other devices / appliances requiring electrical power. It is the intent of

the Engineer that all light fixtures be powered and controlled unless specifically noted on the plans; that all wiring devices (receptacles and direct connected equipment) be circuited to a power source of the correct voltage and that all HVAC, elevator equipment and other equipment be properly wired to the correct voltage power source; that all communications and security systems devices and equipment and all fire alarm system devices and equipment are installed, wired and systems are fully operational.

- C. It is the responsibility of the Contractor to review the construction drawings (reflected ceiling plans) for light fixtures, casework elevation details for electrical devices which are not indicated on the electrical drawings; to review the mechanical and plumbing documents and all other drawings to determine the electrical rough-ins for all equipment requiring power connections, and to include in their proposals the correct and complete electrical rough-ins for all of these items which were inadvertently not indicated on the electrical drawings, OR the Contractor shall specifically enumerate each item requiring electrical rough-in which is not specifically shown on the electrical drawings, and indicate the electrical provisions of these items as specifically excluded from his proposal.
- D. It is the responsibility of the Contractor to compare the scale of all electrical drawings with the scale of the architectural drawings and make adjustments to all electrical drawings which have the incorrect drawing scale so that his material takeoffs are not in error due to an incorrectly labeled drawing scale and his proposal is complete.
- E. No proposal shall be accepted which specifically excludes any of the provisions of paragraphs B, C, or D above.

1.6 PROJECT RECORD DOCUMENTS

- A. Maintain at the job site a separate set of white prints (black line) of the contract drawings for the sole purpose of recording the "as-built" changes and diagrams of those portions of work in which actual construction is significantly at variance with the contract drawings. Mark the drawings with a colored pencil. Prepare, as the work progresses and upon completion of work, reproducible drawings clearly indicating locations of various major and minor feeders, equipment, and other pertinent items, as installed. Record underground and under slab service and feeders installed, dimensioning exact location and elevation of such installations.
- B. At conclusion of project, obtain without cost to the Owner, electronic PDF and AutoCAD 2014 and / or Revit CAD files of the original drawings and transfer as-built changes to these. Provide the following as-built documents including all contract drawings regardless of whether corrections were necessary and include in the transmittal: "2 sets of CDs and prints for Owner's use, one set of CDs, prints, and mylars for Architect / Engineers Records". Delivery of these as-built electronic, reproducibles and prints is a condition of final acceptance.
 - 1. 3 sets of electronic AutoCAD (2014 dwg) and / or Revit CAD drawing files, on CD-ROM media, of each contract as-built drawing.
 - 2. One reproducible Dayrex Mylar film positive of each contract as-built drawing.
 - 3. Three sets of blue-line prints of each contract as-built drawing.
 - 4. Three sets of pdf prints of each contract as-built drawing on CD.
- C. As-Built Drawings should indicate the following information as a minimum:
 - Indicate all addendum changes to documents.
 - 2. Remove Engineer's Seal, name, address, and logo from drawings.
 - Mark documents RECORD DRAWINGS.
 - 4. Clearly indicate: DOCUMENT PRODUCED BY:
 - 5. Indicate all changes to construction during construction. Indicate actual routing of all conduits, etc. that was deviated from construction drawings.

- 6. Indicate exact location of all underground electrical raceways, and elevations.
- 7. Correct schedules to reflect (actual) equipment furnished and manufacturer.
- 8. During the execution of work, maintain a complete set of Drawings and specifications upon which all locations of equipment, devices, and all deviations and changes from the construction documents in the work shall be recorded.
- Exact location of all electrical equipment in building. Label panel schedules to indicate actual location.
- 10. Exact location of all electrical equipment in and outside of the building.
- 11. Exact location of all outdoor lighting poles and equipment.
- 12. Location, size and routing of all feeder conduits, equipment, etc. shall be accurately and neatly shown to dimension.
- 13. Exact location of all roof mounted equipment, wall, roof and floor penetrations.
- 14. Cloud all changes.
- 15. Update all panel schedules with all additional circuits added or deleted through construction. Identify each circuit to include all information specified for directory cards for circuit identification in panelboards.

1.7 SPACE REQUIREMENTS

A. Consider space limitations imposed by contiguous work in selection and location of equipment and material. Do not provide equipment or material that is not suitable in this respect.

1.8 RELATION WITH OTHER TRADES

- A. Carefully study all matters and conditions concerning the project. Submit notification of conflict in ample time to prevent unwarranted changes in any work. Review other Divisions of these specifications to determine their requirements. Extend electrical services and final connections to all items requiring same.
- B. Because of the complicated relationship of this work to the total project, conscientiously study the relation and cooperate as necessary to accomplish the full intent of the documents.
- C. Provide sleeves and inserts in forms as required for the work. Stub up and protect open ends of pipe before any concrete is placed. Furnish sizes of required equipment pads. Furnish and locate bolts and fittings required to be cast in them.
- D. Locate and size openings required for installation of work specified in this Division in sufficient time to prevent delay in the work.
- E. Refer to other Divisions of the specifications for the scope of required connections to equipment furnished under other Division. Determine from the General Contractor / Construction Manager for the various trades, the Owner, and by direction from the Architect / Engineer, the exact location of all items. The construction trades involved shall furnish all roughing-in drawings and wiring diagrams required for proper installation of the electrical work.
 - 1. Make final electrical connections to all electrically operated equipment indicated on the drawings, except as noted.
 - The responsibility for alignment of motor and driven equipment is specified in the related division.
- F. Request all Shop Drawings required in ample time to permit proper installation of all electrical provisions.

G. Extend services as indicated to the various items of equipment furnished by others. Rough-in for the various items and make final connections ready for operation upon placing of the equipment.

1.9 CONCEALED AND EXPOSED WORK

A. When the word "concealed" is defined as hidden from sight as in chases, furred spaces or above ceilings. "Exposed" is defined as open to view, in plain sight.

1.10 GUARANTEE

A. Guarantee work for 1 year from the date of substantial completion of the project. During that period make good any faults or imperfections that may arise due to defects or omissions in material, equipment or workmanship. Replacement of failed parts or equipment shall be provided.

1.11 MATERIAL AND EQUIPMENT

A. Furnish new and unused materials and equipment meeting the requirements of the paragraph specifying acceptable manufacturers. Where two or more units of the same type or class of equipment are required, provide units of a single manufacturer.

1.12 NOISE AND VIBRATION

A. Select equipment to operate with minimum noise and vibration. If noise or vibration is produced or transmitted to or through the building structure by equipment, piping, ducts or other parts of work, and judged objectionable by the Owner, Architect, or Engineer, rectify such conditions at no additional cost to the Owner. If the item of equipment is judged to produce objectionable noise or vibration, demonstrate at no additional cost that equipment performs within designated limits on a vibration chart.

1.13 ACCEPTABLE MANUFACTURERS

A. Manufacturers names and catalog number specified under sections of Division 26 are used to establish standards of design, performance, quality and serviceability and not to limit competition. Equipment of similar design, materials, energy efficiency characteristics (where applicable) and lighting performance characteristics (where applicable) equal to that specified, manufactured by a named manufacturer shall be acceptable on approval. A request for prior approval of equipment not listed must be submitted ten (10) days before proposal due date. Submit a marked-up set of the relevant specification section indicating all variances, a comparison to the specified product, and of construction and performance criteria, complete design and performance data for the specified product and the proposed substitution for comparison to the Engineer. The Architect issues approvals of acceptable manufacturers as addenda to the Construction Proposal Documents.

1.14 UTILITIES. LOCATIONS AND ELEVATIONS

- A. Locations and elevations of the various utilities included within the scope of this work:
 - Obtained from utility maps and other substantially reliable sources.
 - 2. Are offered separate from the Contract Documents as a general guide only without guarantees to accuracy.
- B. Examine the site and verify the location and elevation of all utilities and of their relation to the work. Existing utilities indicated on the site plans are for reference only and shall be field verified by the Contractor with the respective public or private utility.

1.15 OPERATING TESTS

- A. After all electrical systems have been completed and put into operation, subject each system to an operating test under design conditions to ensure proper sequencing and operation throughout the range of operation. Tests shall be made in the presence of the Architect / Engineer and Owner. Provide minimum 24-hour advance notice of scheduling of all tests. Make adjustments as required to ensure proper functioning of all systems. Special tests on individual systems are specified under individual sections. Submit 3 copies of all certifications and test reports adequately in advance of completion of the work to allow for remedial action as required to correct deficiencies discovered in equipment and systems.
- B. Notify Owner's Commissioning Authority (CxA) prior to performing any tests to the CxA may witness test at his/her discretion. Refer to Section 26 01 00 Commissioning of Electrical Systems.

1.16 WARRANTIES

- A. All normal and extended warranties shall include parts, labor, miscellaneous materials, travel time, incidental expenses, normal freight / shipping, refrigerant, oils, lubricants, belts, filters and any expenses related to service calls required to diagnose and correct warranty problems.
- B. Manufacturer's warranty shall be from one year from date of substantial completion. Contractor shall be responsible for extending the warranties regardless of date of installation or commissioning.
- C. Submit 3 copies of all warranties and guarantees for systems, equipment, devices and materials. These shall be included in the Operating and Maintenance Manuals.

1.17 BUILDING CONSTRUCTION

A. It shall be the responsibility of the sub-contractor to consult the Contract Drawings, details and specifications and thoroughly familiarize himself as to the construction and all job related requirements. All construction trades shall cooperate with the General Contractor / Construction Manager Job site superintendent and lay out work so that all raceways and other items are placed in the walls, furred spaces, chases, etc., so that there shall be no delay in the job.

1.18 TEMPORARY FACILITIES

- A. General: Refer to Division 1 for general requirements on temporary facilities.
- B. Temporary Wiring: Temporary power and lighting for construction purposes shall be provided under this Division. Installation of temporary power shall be in accordance with NEC Article 527.
- C. Temporary facilities, wire, lights and devices are the property of this Contractor and shall be removed by this Contractor at the completion of the Contract.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 IDENTIFICATION OF EQUIPMENT

A. Identification of Equipment:

- All major equipment shall have a manufacturer's label identifying the manufacturer's address, equipment model and serial numbers, equipment size, and other pertinent data. Take care not to obliterate this nameplate. The legend on all nameplates or tags shall correspond to the identification shown on the Operating Instructions. All panels, cabinets, or equipment requiring 120 volt or higher power shall be labeled as required which includes circuit designation and circuit panelboard location, regardless of which discipline installs the equipment.
- 2. Three layer laminated plastic engraved identifying nameplate shall be permanently secured to each switchboard, distribution panel, motor control center, transformer, panelboard, safety disconnect switch, enclosed circuit breaker, transfer switches, remote generator transfer deices not installed inside light fixtures, wireway, busduct plug, terminal cabinet, surge protective device, capacitor, individual motor controller, contactor, fire alarm panels (main and remote booster), and communications (voice, data, video) cabinet or rack, security panels, time clocks, BMCS cabinets, sound reinforcement cabinets and racks, miscellaneous control cabinets, equipment integral disconnect switches, toggle or motor switches, disconnects for equipment, exterior junction boxes, exterior pull boxes, exterior wireways and gutters, and rooftop equipment (i.e.: supply and exhaust fans, rooftop HVAC equipment) with stainless steel screws.
 - a. Utility Power: White letters on black background
 Generator Power (White letters on red background
 UPS Power: White letters on blue background
 Load Bank Circuits: White letters on green background
 Solar or Wind Power Generation: White on orange background
 - b. Identifying nameplates shall have 1/2-inch high, engraved letters for equipment designation and ¼-inch letters indicating source circuit designation, (i.e.: "PANEL HA –fed from MDP-6 located in Mech. Rm. 100"). The words "fed from" and "located" shall be included in the labeling.
 - c. Each switchboard, distribution panel, transfer switch, generator transfer device (GTD) for emergency lighting, and motor control center feeder or branch circuit device shall have a nameplate showing the load and location of load served in ¼-inch high, engraved letters. Circuit breaker name and kirk key designation if applicable
 - d. Each section of multiple section panelboards shall also indicate panelboard section number (i.e.: Panel "HA-Section 2 fed from MDP-6 located in Mech. Rm. 100")
 - e. Motor Controllers, starters, and contactors: Provide neatly typed label inside each motor controller and contactor enclosure door identifying motor or load served, nameplate horsepower, full load amperes, code letter, service factor, and voltage / phase rating.
 - f. Individual motor controller and contactor nameplates shall include load served, location of load served, panel and circuit numbers serving load, location of panel serving load, panel and circuit number serving control circuit, location of panel serving control circuit (if different from panel serving load), description and location (if applicable) of control controlling contactor (i.e. Controlled: Switch in RM 100, and Controlled: BMCS). Contactor nameplate is to include whether it is a lighting or receptacle contactor and name of contactor. i.e. C-1.

Lighting Contactor Example	Receptacle Contactor Example				
Lighting Contactor C1	Receptacle Contactor C2				
West Parking Lot Pole Lights	Table Recpts Lab Rm 100				
Fed From Panel HA-2,4,6	Fed From Panel LA-2,4,6,8				
Located Main Elec. Rm. 100	Located Mech. Rm. 110				

Control Circuit-Panel LA 42	Control Circuit-Panel LA-42
Located Main Elec. Rm. 100	Controlled-Emer Shut Off Mushroom
Controlled-BMCS	Switch Rm 101

- g. Exterior J-boxes, pull boxes, and gutters shall have panel identification, circuit numbers, and location of panel listed on name plate. Low voltage shall be identified per contents, examples: DATA, BMCS, F/A
- h. Name plates on equipment served from switchboards, distribution panels, I-Line panels, and motor control centers are not to include circuit numbers shown on drawings as the circuit numbers are for construction drawing purposes only.
- i. Panel names for 277/480v shall start with the letter "H" and 120/208v, 120/240v shall start with the letter "L". No panel shall be named to include a number other than multi sectional panels, example HA-section 2. New panels installed in renovation or site additions shall have names approved or designated by Owner's electrical representative. Panel names shall not include the letter "I". Transformer names shall start with the letter "T" followed by the panel name it serves, i.e. TLA.
- h. Main service ATS label shall include equipment name, emergency source and location, normal power source and location, panel served and location. Wall mounted ATS serving lighting loads shall include type of lighting and location, emergency panel and circuit ID and location of panel, normal panel and circuit ID and location of panel.

Main Service ATS Example Wall Mounted Lighting ATS Example
ATS-1 ATS

Emer Power-Emer Generator
Located Chiller Yard
Normal Power-MSB
Located-Mech Rm 100

Exterior Wall Packs/Soffit Lights
North/West Metal Canopy Lights
Fed from EHA-2
Located Mech Rm 200

Serves Panel EHA Fed From HB-4
Located-Mech Rm 100
Located Mech Rm 200
Located Mech Rm 200
Located Mech Rm 150

- i. Name plates shall include rated bus amperage, voltage, number of phases, number of wires and type of essential electrical system as applicable.
- j. Service equipment available fault current labeling: Provide a 2x3 inch label with blue lettering on contrasting background permanently affixed to the service disconnect/equipment prior to energizing the service equipment. The label shall include the date of installation and the date of calculation. The date of calculation shall be the date indicated by the Engineer of Record's Seal on the Construction Document Electrical One-Line Diagram / Riser Drawing. Example:

SERVICE EQUIPMENT AVAILABLE FAULT CURRENT: ##, ### AMPS DATE OF INSTALLATION: MM/DD/YY DATE OF CALCULATION: MM/DD/YY

- k. Above ceiling lighting control relay equipment: Provide name plate glued to bottom of ceiling T-grid below relay location. White letters on black background with ¼" high letters on ½" tall label for digital lighting module "DLM".
- 3. Cardholders and directory cards shall be furnished for circuit identification in panelboards. Cardholder shall be located on inside of panel door and shall be in a metal frame with clear plastic front. Circuit lists shall be typewritten. Circuit descriptions shall include explicit description and identification of items controlled by each individual breaker, including final graphics room number or name designation and name of each item served. If no building appointed room number or name is given, list locations per the following examples A. Storage in Rm 100 B. Office in Rm 100 C. Storage west of Rm. 100. List corridors as

"corridors". Identify circuits controlled by contactors using a separate notation for each contactor used. List notation at bottom of schedule stating the circuits are controlled by a contactor, list exact location of contactor, and how switched. Do not use architectural room number designation shown on plans. Obtain final graphics room number identification from Architect's final room number graphics plan. All locations served by breakers shall be listed on schedule. Panel schedule shall be large enough to contain all information required. Also refer to Section 26 24 16.

- 4. Permanent, waterproof, black markers shall be used to identify each lighting and power grid junction box, gutter and wireway. Clearly indicate the panel and branch circuit numbers available at that junction box, gutter or wireway. Where low voltage relay panels are used for lighting control, identify the low voltage relay panel and number in addition to the branch circuit panel and number.
- Pull Boxes, Transformers, Disconnect Switches, etc.: Field work each with a name plate showing identity, voltage and phase and identifying equipment connected to it. The transformer rating shall be shown on the panels or enclosures. For an enclosure containing a motor starter, the nameplate shall include the Owner's motor number, motor voltage, number of motor phases, motor load being serviced, motor horsepower, and motor full load current. Nameplates shall also indicate where panel is fed from.
- B. Prohibited Markings: Markings intended to identify the manufacturer, vendor, or other source from whom the material has been obtained are prohibited for installation in public, tenant, or common areas within the project. Also prohibited are materials or devices that bear evidence that markings or insignias have been removed. Certification, testing (example, Underwriters Laboratories), and approval labels are exceptions to this requirement.
- C. Warning Signs: Provide warning signs where there is hazardous exposure associated with access to or operation of electrical facilities. Provide text of sufficient size to convey adequate information at each location; mount permanently in an appropriate and effective location. Comply with industry standards for color and design.
- D. Wire and Cable Markers: Provide vinyl cloth markers with split sleeve or tubing type, except in manholes provide stainless steel with plastic ties.
- E. Wire and Cable Labeling: Provide wire markers on each conductor in all boxes, pull boxes, gutters, wireways, contactors, and motor controllers and load connection. Identify with panelboard / switchboard branch circuit or feeder number for power and lighting circuits, and with control wire number as indicated on equipment manufacturer's shop drawings for control wiring.
- F. Underground Warning Tape: Thomas and Betts or approved equal. Six-inch wide plastic tape, colored red for 50 volts or above electrical, or orange for communications and control with suitable warning legend describing buried electrical lines; telephone lines and data lines per APWA recommendations. All underground electrical conduits shall be so identified. Tape shall be buried at a depth of 6-inches below grade and directly above conduits or ductbanks. Provide magnetic marking tape below all underground electrical conduits.

3.2 CUTTING AND PATCHING

A. General: Comply with the requirements of Division 1 for the cutting and patching of other work to accommodate the installation of electrical work. Except as authorized by the Architect / Engineer, cutting and patching of electrical work to accommodate the installation of other work is not permitted.

3.3 INSTRUCTION OF OWNER'S PERSONNEL

- A. Prior to substantial completion, conduct an on-site training program to instruct Owner's operating personnel in the operation and maintenance of the electrical systems.
 - 1. Provide the training during regular working day.
 - 2. The Instructors shall be experienced in their phase of operation and maintenance of the electrical systems and with the project.
 - 3. Refer to other specification sections for additional training and commissioning requirements.
- B. Before on-site training, submit the program syllabus; proposed time and dates; for review and approval, minimum 48 hours prior to proposed training time and date.
 - 1. One copy to the Owner
 - 2. One copy to the Architect / Engineer
- C. The Owner shall provide a list of personnel to receive instructions, and shall coordinate their attendance at the agreed upon times.
- D. Use operation and maintenance manuals as the basis of instruction. Review manual with personnel in detail. Explain all aspects of operation and maintenance.
- E. Demonstrate start-up, operation, control, adjustment, trouble-shooting, servicing, maintenance, and shut down of each item of equipment.
- F. Demonstrate equipment functions (both individually and as part of the total integrated system).
- G. Prepare and insert additional data in the operating and maintenance manuals when the need for additional data becomes apparent during instructions.
- H. Submit a report within one week after completion of training. List time and date of each demonstration, hours devoted to the demonstration, and a list of people present, with their respective signatures.
- I. At the conclusion of the on-site training program, have the person designated by the Owner sign a certificate to certify that he / she has a proper understanding of the system, that the demonstrations and instructions have been satisfactorily completed, and the scope and content of the operating and maintenance manuals used for the training program are satisfactory.
- J. Provide a copy of the report and the certificate in an appropriately tabbed section of each Operating and Maintenance Manual.

3.4 OPENINGS

A. Framed, cast or masonry openings for boxes, equipment or conduits are specified under other divisions. Drawings and layout work for exact size and location of all openings are included under this division.

3.5 HOUSEKEEPING PADS

- A. Provide concrete equipment housekeeping pads under all floor and outdoor mounted electrical equipment.
- B. Concrete and reinforcing steel shall be as specified in Division 3, or as indicated or noted.

C. Concrete pads:

- 6-inches thick minimum indoors; 8-inches thick minimum outdoors, or match existing if indicated on the drawings to extend existing pads, or in other sections of the specifications.
- 2. Chamfer strips at edges and corner of forms.
- 3. Smooth steel trowel finish.
- 4. Extend 3-inches minimum indoors beyond perimeter of equipment unless otherwise shown.
- 5. 6-inch x 6-inch #8 wire reinforcement mesh.

3.6 OBSTRUCTIONS

- A. The drawings indicate certain information pertaining to surface and subsurface obstructions, which has been taken from available drawings. Such information is not quaranteed, however, as to accuracy of location or complete information.
 - 1. Before any cutting or trenching operations are begun, verify with Owner's representative, utility companies, municipalities, and other interested parties that all available information has been provided.
 - 2. Should obstruction be encountered, whether shown or not, alter routing of new work, reroute existing lines, remove obstruction where permitted, or otherwise perform whatever work is necessary to satisfy the purpose of the new work and leave existing services and structures in a satisfactory and serviceable condition.
- B. Assume total responsibility for and repair any damage to existing utilities or construction, whether or not such existing facilities are shown.

3.7 VANDAL RESISTANT DEVICES

- A. Where vandal resistant screws or bolts are employed on the project, deliver to the Owner 2 suitable tools for use with each type of fastener used, and 25 percent spare fasteners.
- B. Proof of delivery of these items to the Owner shall be included in the Operating and Maintenance Manuals.

3.8 PROTECTION

- A. Protect work, equipment, fixtures, and materials. At work completion, work must be clean and in original manufacturer's condition.
- B. Do not deliver equipment to this project site until progress of construction has reached the stage where equipment is actually needed or until building is closed in enough to protect the equipment from weather. Equipment allowed to stand in the weather shall be rejected, and the contractor is obligated to furnish new equipment of a like kind at no additional cost to the Owner.

3.9 COORDINATION OF BRANCH CIRCUIT OVERCURRENT AND PROTECTION DEVICES

- A. Review with equipment specified which requires electrical connections. Review equipment shop drawings and manufacturer's nameplate data and coordinate exact branch circuit overcurrent protective device and conductors with equipment provided.
 - 1. Provide equipment manufacturer's recommended overcurrent protective device indicated on nameplate at no additional cost to the Owner.
 - 2. If branch circuit conductors and / or conduit sizing is less than the minimum required by equipment manufacturer, notify the Architect / Engineer immediately, prior to rough-in.

- 3. If equipment manufacturer is a substitution to the specified equipment manufacturer, provide the greater of the conductors specified or those required for the installed equipment manufacturer's minimum circuit conductors, at no additional cost to the Owner.
- 4. If conductors indicated on plans are in excess of that permitted by equipment manufacturer, notify Architect / Engineer immediately, prior to rough-in.
- 5. If conductors indicated on plans are in excess of that permitted by the equipment manufacturer, provide the maximum conductors permitted by the equipment manufacturer based on NEC ampacity tables, either in a single set, or as a set of parallel conductors as permitted by the NEC. Conductor size and quantity entering the equipment enclosures shall not exceed the equipment manufacturer's maximum recommendations.

3.10 FAULT CURRENT AND OVERCURRENT DEVICE COORDINATION AND ARC FLASH STUDY

- A. Contractor shall provide a coordination study, fault current analysis, and Arc-Flash study report for new electrical distribution equipment downstream to the last new overcurrent device in each feeder or branch circuit, conducted and prepared by the switchgear manufacturer. The coordination study and fault current analysis shall include the manufacturer's recommendations for all adjustable overcurrent devices specified or provided. Study does not require inclusion of existing switchgear, except it shall include existing or new overcurrent devices in existing switchgear serving new switchgear. Contractor shall submit the report results prior to submitting switchgear submittals to allow changes or modifications to equipment selection.
- B. Contractor shall adjust all overcurrent device settings based on manufacturer's recommendations, or as directed by Owner / Architect at no additional cost to Owner. Settings for GFI shall be set at maximum as permitted by the NEC.
- C. Arc-Flash & Shock-Hazard Warning Labels: Provide arc-flash and shock hazard-warning labels that comply with ANSI Z535.4 on switchgear, switchboards, transformers, motor control centers, panelboards, motor controllers, safety switches, industrial control panels and other equipment that is likely to require examination, adjustment, servicing, or maintenance while energized. Locate the marking to be clearly visible to qualified persons before examination, adjustment, servicing, or maintenance of the equipment. On renovation projects, install arc-flash warning labels on existing equipment where lock-out / tag-out will be required for the renovation work. Provide the information listed below on each label. Specify that arc-flash warning label information be produced by the electrical equipment manufacturer or supplier as a part of the final power system studies to be submitted by the Contractor in accordance with the electrical acceptance testing.
 - Note: In addition to the final arc-flash analysis, the final power system studies include load flow and fault-current calculations, and an overcurrent protective device (OCPD) coordination study based on the actual equipment to be installed for the project.
- D. Information to be determined and applied to electrical equipment:
 - Arc-Flash Protection Boundary
 - Arc-Flash incident energy calculated in accordance with IEEE Std 15841[™]
 - 3. Working distance calculated in accordance with IEEE Std 1584a ™
 - 4. NFPA 70E Hazard / Risk Category Number or the appropriate personal protective equipment (PPE) for operations with doors closed and covers on.
 - a. Typical operations include operating circuit breakers, fused switches, and meter selector switches.
 - 5. System phase-to-phase voltage
 - 6. Condition(s) when a shock hazard exists (e.g. "With cover off")
 - 7. Limited Approach Boundary as determined from NFPA 70E, Table 130.2(C)

- 8. Restricted Approach Boundary as determined from NFPA 70E, Table 130.2(C)
- 9. Prohibited Approach Boundary as determined from NFPA 70E, Table 130.2(C)
- 10. Unique equipment designation or code (described under "Component Identification"
- 11. Class for insulating gloves based on system voltage (e.g., Class 00 up to 500V)
- 12. Voltage rating for insulated or insulating tools based on system voltage (e.g., 1000V)
- 13. Date that the hazard analysis was performed.
- 14. "Served from" circuit directory information including the serving equipment designation, location (e.g., room number), circuit number, and circuit voltage / number of phases / number of wires.
- 15. If applicable, the "serves" circuit directory information including the served equipment designation, location (e.g., room number), circuit number, and circuit voltage / number of phases / number of wires.
- 16. An abbreviated warning label may be used where it has been determined that no dangerous arc-flash hazard exists in accordance with IEEE 1584a ™, paragraph 9.2.3.
- 17. Use a "DANGER" label where the calculated arc-flash incident energy exceeds 40 cal/cm.
- E. Submittals: Submit four copies of coordination study and certified fault current study results to the Architect for review.

3.11 EQUIPMENT BACKBOARDS

- A. Backboards: ¾ inch, fire retardant, exterior grade plywood, painted gray, both sides.
 - 1. Provide minimum of two 4-ft. by 8-ft. sheets of plywood for each new telephone equipment terminal location.
 - 2. Provide minimum of two 4-ft. by 4-ft. sheets of plywood for each new data / voice / video / communications equipment location / cable TV head end equipment, or security equipment location.

3.12 TESTING

- A. The contractors for the various sub-systems shall submit proposed testing procedures for their systems, subject to review and approval and Owner acceptance. The contract will not be declared to be substantially complete until the functional operation of the subsystems have been demonstrated and verified and reports have been provided, reviewed and accepted.
- B. The project will not be declared substantially complete until the following has taken place.
 - 1. The "As-Built" drawings have been submitted, reviewed and accepted by the Architect / Owner / Owner's Construction Representative.
 - 2. The building emergency lighting system and other systems including but not limited to those listed below have been tested, completed factory start-up and programming and adjusting as required for a complete and fully operational system acceptable to the Architect and Owner.
 - a. Occupancy Sensor and Lighting Controls
 - b. Surge protective device equipment
 - c. Overcurrent devices
 - d. Motor Controllers
 - e. Emergency Lighting
 - f. Building Fire Alarm System
 - g. Clock System
 - h. Television Distribution System
 - i. Building Data / Voice Cabling System

- j. Surveillance and Security System
- k. Intercom / Telephone
- I. Sound Reinforcement Systems
- m. Building Lightning protection System

3.13 LOAD BALANCING

A. Balance the loads on each low-voltage feeder so that the voltage on each phase is within +/1.0% of the average voltage of the three phases. Refer to the DOE Office of Industrial
Technologies, "Motor Tip Sheet #7" dated September 2005 available for download to PDF
format at no charge at:

http://www1.eere.energy.gov/industry/bestpractices/pdfs/eliminate_voltage_un_balanced_mo tor-systemts7.pdf

END OF SECTION

SECTION 26 05 05

ELECTRICAL ALTERATIONS PROJECT PROCEDURES

PART 1 - GENERAL

1.1 WORK INCLUDED

- A. Inspection and service of existing equipment and materials to remain or be reused.
- B. Handling of equipment and materials to be abandoned.
- C. Handling of equipment and materials to be removed.

1.2 QUALITY ASSURANCE

A. Coordination with the Contractor prior to the disconnection or shutdown of existing equipment, or to the modification of existing operational systems.

1.3 CONTRACT DRAWINGS

A. There is the possibility that there exist conditions and devices that are affected by the work indicated on the drawings and called for in the specifications (project manual) that do not appear on the drawings. It is the Contractors responsibility to visit the site and determine all of the existing conditions and to consider these existing conditions when making and presenting a proposal, to have a complete proposal.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

- A. Material used to upgrade and repair existing equipment shall conform to that specified.
- B. Material used to upgrade and repair existing equipment shall not void existing warranties or listings of the equipment to be upgraded or repaired.
- C. Material used to upgrade and repair existing equipment shall be new and shall be of the same manufacturer of the existing equipment, shall be acquired through the existing original equipment manufacturer's approved distribution channels, shall have manufacturer's warranties for the new material being used, and shall be listed for the use intended.

PART 3 - EXECUTION

3.1 INSPECTION

- A. Existing materials and equipment indicated on the drawings or in the specifications to be reused shall be inspected for damaged or missing parts. Notify the Architect / Engineer, in writing, accordingly.
- B. If using materials specified or shown on the drawing voids or diminishes the warranty or operation of remaining equipment or systems, the Contractor shall notify the Architect / Engineer, in writing.
- C. Verify field measurements and circuiting arrangements.

- D. Verify that abandoned wiring, panelboards, and switchboards, disconnect switches, and equipment serve only abandoned facilities. Where abandoned wiring, panelboards, switchboards, and equipment which serve existing facilities are to remain, Contractor shall provide means and methods to ensure existing facilities remain energized with the correct voltage, overcurrent protection, conductors, and circuit ampacity required by the existing facilities to remain.
- E. Demolition Drawings are based on casual field observation, and when available, existing record documents. Report discrepancies to Architect before disturbing existing installation, and immediately after such discrepancies are discovered.

3.2 APPLICATION

- A. Existing materials and equipment indicated on the drawings or in the specification to be reused shall be cleaned and reconditioned, including tightening of feeder and bus bar lugs prior to installation and reuse in the modified system.
- B. Remove existing luminaries for alterations/renovations. Use mild detergent to clean all exterior and interior surfaces; rinse with clean water and wipe dry. For each luminarie that is taken down for alteration and then reinstalled, replace damaged parts, provide new lamps and, with matching paint, touch-up scratched or abraded areas, and replace cracked, broken or missing lenses or diffusers. Replace unrepairable fixtures with new fixtures
- C. Material and equipment removed that is not to be salvaged for Owner's use or for reuse on the project shall become the property of the Contractor and shall be removed from the site.
- D. Prior to start of construction, Contractor shall walk areas to be renovated with Owner to identify and document items to be salvaged for Owner's use.
- E. Material or equipment salvaged for Owner's use shall be carefully handled and stored where directed by the Owner.
- F. Materials and equipment not indicated to be removed or abandoned shall be reconnected to the new system.
- G. Clean and repair existing materials and equipment that remain or are to be reused.
- H. Panelboards Reused and Modified for Renovation: Clean exposed surfaces and check tightness of electrical connections. Replace damaged circuit breakers and provide closure plates for vacant positions. Provide typed circuit directory showing revised circuiting arrangement.

3.3 SEQUENCING AND SCHEDULING

- A. Coordinate utility service outages with Utility Company, Architect and Owner.
- B. Provide temporary wiring and connections to maintain existing systems in service during construction. When work must be performed on energized equipment or circuits use personnel experienced in such operations.
- EDIT C. Prior to shutdown of existing power for any single extended period of time greater than 18 hours, provide at minimum 120/240 volt, 1-phase, 3-wire electrical service to provide temporary power to all critical loads as identified by Owner including but not limited to all security systems, fire alarm panel and associated remote power supplies. Contractor

shall provide continuous operation temporary generator power or coordinate directly with local utility regarding temporary power service and metering and provide all necessary permits and fees at no cost to the Owner.

- EDIT D. Provide a minimum 30 space panelboard with required branch circuit breakers as required and all associated temporary wiring as required. Remove all temporary power prior to substantial completion.
 - E. Existing Electrical Service: Refer to drawings for work in remodeled areas. Where facilities in these areas are to remain in service, any related work to keep the facilities in operation is specified in this Division. Maintain existing system in service until new system is complete and ready for service. Disable system only to make switchovers and connections. Obtain written permission from Owner at least 10 business days before partially or completely disabling system. Minimize outage duration. Make temporary connections to maintain service in areas adjacent to work area. Disclose the extent, exact time and expected duration of the outage in a written request to the Owner.
 - F. Remove and replace existing conduit, wiring, outlets, devices, lighting fixtures, panels and appurtenances as occasioned by new or remodeled construction. Re-establish service to lights, switches and devices that may be interrupted by remodeled construction.
 - G. Disconnect electrical systems in walls, floors and ceilings scheduled for removal. When outlets are removed, wire shall be pulled out of the conduit back to the nearest remaining box or cabinet.
 - 1. Remove exposed conduit that has been abandoned.
 - 2. Cap conduit beyond the finish line.
 - 3. Provide unswitched circuit leg for emergency battery powered equipment; circuit from same branch circuit breaker as switched normal lighting circuit.
 - H. Where new/existing luminaries or devices are shown being connected to existing circuits:
 - 1. Field verify existing system voltage
 - 2. Provide ballast / device to match system voltage
 - I. Verify the loading of each circuit affected by remodeling work. The maximum load of any branch circuit shall not exceed 80% of its rating.
 - J. Remove equipment, systems, conductors, wiring, raceways, etc. abandoned or not required for existing or new systems. Coordinate with Architect / Owner for salvage by Owner. Remove abandoned / not required raceways and wiring back to nearest box serving load to remain, or back to panel if not serving remaining load.
 - K. Existing Power, and Lighting and Appliance Branch Circuit Distribution System: Maintain existing system in service unless as noted or specified otherwise. Disable system only to make switchovers and connections. Notify Owner at least 72 hours before partially or completely disabling system. Minimize outage duration. Make connections to maintain service in areas adjacent to work area.
 - L. Existing Lighting System: Maintain existing system in service unless as noted or specified otherwise. Disable system only to make switchovers and connections. Notify Owner at least 72 hours before partially or completely disabling system. Minimize outage duration. Make connections to maintain service in areas adjacent to work area.
 - M. Existing Fire Alarm System: Maintain existing system in service. Disable system only to make switchovers and connections. Notify Owner and local fire service at least 72 hours

- before partially or completely disabling system. Minimize outage duration. Make connections to maintain service in areas adjacent to work area.
- N. Existing Telephone System: Maintain existing system in service. Disable system only to make switchovers and connections. Notify Owner and Telephone Company at least 72 hours before partially or completely disabling system. Minimize outage duration. Make connections to maintain service in areas adjacent to work area.
- O. Existing Paging and Sound Reinforcement Systems: Maintain existing system in service. Disable system only to make switchovers and connections. Notify the Owner at least 72 hours before partially or completely disabling system. Minimize outage duration. Make connections to maintain service in areas adjacent to work area.
- P. Existing Data Network: Maintain existing system in service. Disable system only to make switchovers and connections. Notify the Owner at least 72 hours before partially or completely disabling system. Minimize outage duration. Make connections to maintain service in areas adjacent to work area.
- Q. Existing Video Distribution System: Maintain existing system in service. Disable system only to make switchovers and connections. Notify the Owner at least 72 hours before partially or completely disabling system. Minimize outage duration. Make connections to maintain service in areas adjacent to work area.
- R. Existing Security System: Maintain existing system in service. Disable system only to make switchovers and connections. Notify the Owner at least 72 hours before partially or completely disabling system. Minimize outage duration. Make connections to maintain service in areas adjacent to work area.
- S. Existing Video Surveillance System: Maintain existing system in service. Disable system only to make switchovers and connections. Notify the Owner at least 72 hours before partially or completely disabling system. Minimize outage duration. Make connections to maintain service in areas adjacent to work area.

3.4 DEMOLITION AND EXTENSION OF EXISTING ELECTRICAL WORK

- A. The Contractor shall modify, remove, and/or relocate all materials and items so indicated on the drawings or required by the installation of new facilities. All removals and/or dismantling shall be conducted in a manner as to produce maximum salvage. Salvage materials shall remain the property of the Owner, and shall be delivered to such destination as directed by the Owner's representative unless they are not wanted, then it will be the responsibility of this Contractor to remove such items and properly dispose of them. Materials and/or items scheduled for relocation and which are damaged during dismantling or reassembly operations shall be repaired and restored to good operative condition. The Contractor may, at his discretion, and upon approval of the Owner's representative substitute new materials and/or items of like design and quality in lieu of materials and/or items to be relocated.
 - Remove abandoned electrical distribution equipment, utilization equipment, outlets and accessible portions of wiring, raceway systems, and cables back to the source panelboard, switchboard, switchgear, communications closet, or cabinet. Abandoned wiring and raceways can result from actions that include the following:
 - a. Equipment is removed or relocated
 - b. Fixtures are removed or relocated
 - c. System is no longer used
 - d. There is no demonstrable near term future use for the existing circuit or raceway system.

- 2. Leave abandoned electrical equipment, conductors, and material in place only if one or more of the following conditions exist:
 - a. The removal requires the demolition of other structures, finishes, or equipment that is still in use. An example is abandoned conduit above an existing plaster ceiling.
 - Removal is not feasible due to hazards, construction methods, or restricted access.
 - c. Removal of abandoned conductors may damage conductors that must remain operational.
- 3. Remove conduits, including those above accessible ceilings, to the point that building construction, earth, or paving covers them. Cut conduit beneath or flush with building construction or paving. Plug, cap, or seal the remaining unused conduits. Install blank covers for abandoned boxes and enclosures not removed.
- 4. Extend existing equipment connections using material and methods compatible with the existing electrical installation and this division.
- Restore the original fire rating of floors, walls, and cielings after electrical demolition.
- 6. Use approved lock-out / tag-out procedures to control hazardous energy sources. Assure that an electrically safe work condition exists in the demolition area before beginning demolition. Where possible, disconnect the building from all sources of electrical power before beginning demolition.
- B. All items to be relocated shall be carefully removed in reverse to original assembly or placement and protected until relocated. The Contractor shall clean, repair, and provide all new materials, fittings, and appurtenances required to complete the relocations and to restore them to good operative order. All relocations shall be performed by workmen skilled in the work and in accordance with standard practice of the trades involved.
- C. When items scheduled for relocation and/or reuse are found to be in damaged condition before work has been started on dismantling, the Contractor shall call the attention of the Owner's representative to such items and receive further instructions before removal. Items damaged in repositioning operations are the contractor's responsibility and shall be repaired or replaced by the contractor as approved by the owner's representative, at no additional cost to the Owner.
- D. Conduit and wiring to items to be removed, salvaged, or relocated shall be removed to points indicated on the drawings, specified, or acceptable to the Owner's representative. Conduit and wiring not scheduled for reuse shall be removed to the points at which reuse is to be continued or service is to remain. Such services shall be sealed, capped, or otherwise tied-off or disconnected in a safe manner acceptable to the Construction Inspector. All disconnections or connections into the existing facilities shall be done in such a manner as to result in minimum interruption of services to adjacent occupied areas. Services to existing areas or facilities that must remain in operation during the construction period shall not be interrupted without prior specific approval of the Owner's representative hereinbefore specified.
- E. Disconnect abandoned outlets and remove devices. Remove abandoned outlets if conduit servicing them is abandoned and removed. Provide blank cover for abandoned outlets that are not removed. Replace existing wiring devices and cover plates with new wiring devices and new cover plates in renovated areas. Any corridor, room, or area indicated to have any new wiring devices installed shall have all of the existing wiring devices and cover plates replaced with new wiring devices and new cover plates.
- F. Disconnect and remove electrical devices and equipment serving utilization equipment that has been removed.

- G. Disconnect and remove abandoned luminaries. Remove brackets, stems, hangers, and other accessories.
- Repair adjacent construction and finishes damaged during demolition and extension work.
- I. Maintain access to existing electrical installations that remain active. Modify installation or provide access panel as appropriate.
- J. Extend existing installations using materials and methods compatible with existing electrical installations, or as specified.
- K. Existing conduit raceway found to need additional hangers installed and/or junction box covers shall be added at no additional cost to the Owner.
- L. Disconnect and remove electrical devices and equipment serving utilization equipment that has been removed.

3.5 PROTECTION OF THE WORK

- A. Provide adequate temporary support and auxiliary structure as necessary to ensure structural value or integrity of affected portion of work.
- B. Provide devices and methods to protect other portions of work from damage.
- C. Execute fitting and adjustment of products to provide a finished installation to comply with specified products, functions, tolerances and finishes.

3.6 IDENTIFICATION OF EQUIPMENT IN RENOVATED AREAS

A. Identification of Equipment: Provide new, typed panel directory cards (and card holders if needed) for existing panelboards located within the renovated areas. Ring out all new and existing circuits within these panelboards as specified in Section 26 05 00 Electrical General Provisions. Do not include the description "existing". Provide new nameplates for all existing electrical equipment in renovated areas as specified in Section 26 05 00 Electrical General Provisions.

3.7 TESTING AND CORRECTIVE MEASURES FOR DAMAGE DURING CONSTRUCTION IN EXISTING LOW VOLTAGE SYSTEMS

- A. Pre-construction testing of existing low voltage systems:
 - Provide a complete operational test of the following systems prior to demolition and renovation. Verify operation of each circuit, device, panel, console, distribution equipment, and associated accessories. Test shall be performed by a contractor and technicians, each certified by the respective manufacturer of the existing special system to perform test, programming, and repairs to the respective manufacturer's system. Testing of the existing system shall include all areas served by the existing system including but not limited to the main campus, remote buildings, and temporary buildings:
 - a. Paging System.
 - b. Telephone System
 - c. Fire Alarm System
 - d. Data Network Communications System
 - e. Video Distribution System
 - f. Security Access Control System
 - g. Video Surveillance System.

- h. Sound Reinforcement System
- Provide a complete written report to the Architect, indicating any deficiencies of the existing system in relation to each component's intended function. Include in the written report evidence of current certification by the respective manufacturer for the contractor and individuals performing the tests. Provide the written report within 14 days of notice to proceed and prior to any demolition or renovation work.
- B. Substantial completion testing of existing low voltage systems:
 - 1. Provide complete operational tests of the following systems within 14-days prior to estimated date of substantial completion. Verify operation of each circuit, device, panel, console, distribution equipment, and associated accessories. Test shall be performed by a contractor and technicians each certified by the respective manufacturer of the existing system to perform test, programming, and repairs to the respective manufacturer's system. Testing of the existing system shall include all areas served by the existing system including but not limited to the main campus, remote buildings, and temporary buildings:
 - a. Paging System.
 - b. Telephone System
 - c. Fire Alarm System
 - d. Data Network Communications System
 - e. Video Distribution System
 - f. Security Access Control System
 - g. Video Surveillance System.
 - h. Sound Reinforcement System
 - 2. Provide a complete written report to the Architect, indicating any deficiencies of the existing system in relation to each component's intended function. Include in the written report evidence of current certification by the respective manufacturer for the contractor and each individual performing the tests. Provide the written report within 14 days of expected date for substantial completion.
- C. Repairs, equipment replacements, and corrections to low voltage systems due to damage caused by contractor:
 - 1. Notify the Owner immediately of any disruption or damage to any low voltage system.
 - Any disruption or damage to the existing access control system or fire alarm system shall be corrected the same day as the disruption or damage occurred. The access control system and fire alarm system shall be tested daily in the presence of the owner prior to the Contractor leaving the job site each day.
 - 3. For each low voltage system other than access control or fire alarm system, a manufacturer certified contractor and certified technicians shall perform corrective measures to each system component that was functional prior to demolition and renovation and found defective or non-functional within 14-days prior to estimated date of substantial completion.
 - 4. Corrective measures to all low voltage systems to correct components of the low voltage systems found damaged by the contractor shall be completed to the satisfaction of the Owner and Architect / Engineer prior to acceptance of substantial completion at no additional cost to the Owner.

END OF SECTION

SECTION 26 05 12

SHOP DRAWINGS, COORDINATION DRAWINGS & PRODUCT DATA

PART 1 - GENERAL

1.1 WORK INCLUDED

- A. Prepare submittals as required by Division 1 and as outlined below.
- B. Submit product data shop drawings only for the following and for items specifically requested elsewhere in the Contract Drawings and Specifications. Architect / Engineer reserves the right to refuse shop drawings not requested for review and to imply that materials shall be provided as specified without exception.
- C. The term submittal, as used herein, refers to all:
 - 1. Shop Drawings
 - 2. Coordination Drawings
 - 3. Product data
- D. Submittals shall be prepared and produced for:
 - 1. Distribution as specified
 - 2. Inclusion in the Operating and Maintenance Manual, as specified, in the related section

1.2 ARCHITECT/ENGINEER REVIEW OF IDENTIFIED SUBMITTALS

- A. The Architect/Engineer will:
 - Review identified submittals with reasonable promptness and in accordance with schedule. Specific equipment submittals that may be required to be expedited shall be submitted separately without other submittal items not requiring the same prompt attention.
 - 2. Affix stamp and initials or signature, and indicate requirements for resubmittal or approval of submittal
 - 3. Return submittals to Contractor for distribution or for resubmission
- B. Review of submittals will not extend to design data reflected in submittals that is peculiarly within the special expertise of the Contractor or any party dealing directly with the Contractor.
- C. Architect / Engineer's review is only for conformance with the design concept of the project and for compliance with the information given in the contract.
 - 1. The review shall not extend to means, methods, sequences, techniques or procedures of construction or to safety precautions or programs incident thereto.
 - 2. The review shall not extend to review of quantities, dimensions, weights or gauges, fabrication processes or coordination with the work of other trades.
- D. The review and approval of a separate item as such will not indicate approval of the assembly in which the item functions.

1.3 SUBSTITUTIONS

- A. Do not make requests for substitution employing the procedures of this Section.
- B. The procedure for making a formal request for substitution is specified in Division 1.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 SPECIFICATION COMPLIANCE REVIEW

A. Mark up a complete copy of the specification section for the product to indicate a) acknowledgement of the specification requirement (Comply), or b) acknowledgement that the particular specification requirement does not apply to this specific project (Not Applicable) or, c) acknowledgement that the specification requirement cannot be made or that a variance is being submitted for review to the Architect/Engineer/Owner (Does Not Comply, Explanation:) Do not submit an outline form of compliance, submit a complete copy with the product data.

3.2 SHOP DRAWINGS AND PRODUCT DATA

- A. Submittals shall not be combined or bound together with any other material submittal.
- B. Submittal Specification Information:
 - 1. Every submittal document shall bear the following information as used in the project manual:
 - a. The related specification section number
 - b. The exact specification section title
 - 2. Submittals delivered to the Architect / Engineer without the specified information will not be processed. The Contractor shall bear the risk of all delays, as if no submittal had been delivered.
- C. Submit individually bound shop drawings and product data for the following when specified or provided. The Fault Current and Overcurrent Device Coordination Analysis shall be submitted prior to other switchgear.
 - 1. Fault Current and Overcurrent Device Coordination Analysis.
 - 2. Enclosed Switches and Circuit Breakers
 - 3. Enclosed Motor Controllers
 - 4. Panelboards and enclosures
 - 5. Wiring devices
 - Motor control centers
 - 7. Electrical controls and time switches
 - 8. Lighting fixtures
 - 9. Site Lighting Poles, Fixtures, Ballast, Drivers, and Lamps
 - 10. Architectural Dimming Systems
 - 11. Surge Protection Devices
 - 12. Electrical Contactors
 - 13. Lighting Controls and Occupancy Sensors
 - 14. PVC Coated galvanized steel conduit and fittings
 - 15. RTRC conduit and fittings
 - 16. Transformers
 - 17. Busway
 - 18. Switchboards
 - 19. Theatrical Lighting Systems
 - 20. Emergency/Standby generator sets and transfer switches
 - 21. Electrical cable trays
 - 22. Sports Lighting Equipment, Fixtures, Poles, Ballast and Lamps
 - 23. Lightning protection system
 - 24. Surface Raceways
 - 25. Medium Voltage Cable and Connectors
 - 26. Fire Rated Cables and Connectors

3.3 SHOP DRAWINGS

- A. Present drawings in a clear and thorough manner. Identify details by reference to sheet and detail, schedule, or room numbers shown on Contract Drawings.
- B. Show all dimensions of each item of equipment on a single composite Shop Drawing. Do not submit a series of drawings of components.
- C. Identify field dimensions; show relation to adjacent or critical features or work or products.

3.4 COORDINATION DRAWINGS

- A. Present in a clear and thorough manner. Title each drawing with project name; identify each element of drawings by reference to sheet number and detail, or room number of contract documents. Minimum drawing scale: 1/4"=1'-0".
- B. Prepare coordination drawings to coordinate installations for efficient use of available space, for proper sequence of installation and to resolve conflicts. Coordinate with work specified in other sections and other divisions of the specifications.
- C. For each room containing major electrical switchgear and each outside equipment pad with major electrical switchgear and equipment, submit plan and elevation drawings. Show:
 - 1. Actual electrical switchgear, equipment and components to be furnished.
 - 2. NEC working space and NEC access to NEC working space.
 - 3. Relationship to other equipment and components provided by other trades, ductwork, piping, air-handling equipment, etc., and openings, doors and obstructions. Drawings shall include an overlay of other systems demonstrating coordination and clearances.
 - 4. Housekeeping pad location and dimensions
- D. Identify field dimensions. Show relation to adjacent or critical features of work or products.
- E. Verify location of wiring devices, telephone outlets and other work specified in this Division.
 - Coordinate with drawing details, site conditions and millwork shop drawings prior to installation.
 - 2. Where required for clarification, submit shop drawings prior to rough-in and fabrication.
- F. Submit shop drawings in plan, elevation and sections, showing receptacles, outlets, electrical and telecommunication devices in casework, cabinetwork and built-in furniture.

3.5 PRODUCT DATA

- A. All product options specified shall be indicated on the product data submittal. All options listed on the standard product printed data not clearly identified as not part of the product data submitted shall become part of the Contract and shall be provided.
- B. Mark each copy of standard printed data to identify pertinent products, referenced to specification section and article number.
- C. Show reference standards, performance characteristics and capacities; wiring and piping diagrams and controls; component parts; finishes; dimensions and required clearances.

D. Modify manufacturer's standard schematic drawings and diagrams to supplement standard information and to provide information specifically applicable to the work. Delete information not applicable.

3.6 MANUFACTURERS INSTRUCTIONS

A. Submit Manufacturer's instructions for storage, preparation, assembly, installation, start-up, adjusting, calibrating, balancing and finishing.

3.7 CONTRACTOR RESPONSIBILITIES

- A. Review submittals prior to transmittal.
- B. Determine and verify:
 - 1. Field measurements
 - 2. Field construction criteria
 - 3. Manufacturer's catalog numbers
 - 4. Conformance with requirements of Contract Documents
- C. Coordinate submittals with requirements of the work and of the Contract Documents.
- D. Notify the Architect/Engineer in writing at time of submission of any deviations in the submittals from requirements of the Contract Documents.
- E. Do not fabricate products, or begin work for which submittals are specified, until such submittals have been produced and bear contractor's stamp. Do not fabricate products or begin work scheduled to have submittals reviewed until return of reviewed submittals with Architect/Engineer's acceptance.
- F. Contractor's responsibility for errors and omissions in submittals is not relieved whether Architect/Engineer reviews submittals or not.
- G. Contractor's responsibility for deviations in submittals from requirements of Contract Documents is not relieved whether Architect/Engineer reviews submittals or not, unless Architect / Engineer gives written acceptance of the specific deviations identified by the Contractor on reviewed documents.
- H. Submittals shall show sufficient data to indicate complete compliance with Contract Documents:
 - 1. Proper sizes and capacities
 - That the item will fit in the available space in a manner that will allow proper service
 - 3. Construction methods, materials and finishes
- I. Schedule submissions at least 15 days before date reviewed submittals will be needed by the Contractor for processing or for making corrections for re-submittal.
- J. Contractor's Stamp of Approval
 - Contractor shall stamp and sign each document certifying to the review of products, field measurements and field construction criteria, and coordination of the information within the submittal with requirements of the work and of Contract Documents.
 - 2. Contractor's stamp of approval on any submittal shall constitute a representation to Owner and Architect / Engineer that Contractor has either determined and verified all quantities, dimensions, field construction criteria, materials, catalog

- numbers, and similar data or assumes full responsibility for doing so, and that Contractor has reviewed or coordinated each submittal with the requirements of the work and the Contract Documents.
- 3. Do not deliver any submittals to the Architect / Engineer that do not bear the Contractor's stamp of approval and signature.
- 4. Submittals delivered to the Architect / Engineer without Contractor's stamp of approval and signature will not be processed. The Contractor shall bear the risk of all delays, as if no submittal had been delivered.

3.8 SUBMISSION REQUIREMENTS

- A. Make submittals promptly in accordance with approved schedule, and in such sequence as to cause no delay in the Project or in the work of any other Contractor. Product and equipment related to site work or other trades which require extensive rough-in, foundations, or structural support shall be submitted as soon as possible after given notice to proceed with construction.
- B. Number of submittals required:
 - 1. Shop Drawings and Coordination Drawings: Submit one electronic data file (pdf) and three opaque reproductions.
 - 2. Product Data: Submit the number of copies the contractor requires, plus those to be retained by the Architect / Engineer, and/or electronic data (pdf) files.
- C. Accompany submittals with transmittal letter, in duplicate, containing:
 - Date
 - 2. Project title and number
 - 3. Contractor's name, address and telephone number
 - 4. The number of each Shop Drawing, Project Datum and Sample submitted
 - 5. Other pertinent data
- D. Submittals shall include:
 - 1. The date of submission
 - 2. The project title and number
 - Contract Identification
 - The names of:
 - a. Contractor
 - b. Subcontractor
 - c. Supplier
 - d. Manufacturer
 - 5. Identification of the product
 - 6. Field dimensions, clearly identified as such
 - 7. Relation to adjacent or critical features of the work or materials
 - 8. Applicable standards, such as ASTM or federal specifications numbers
 - 9. Identification of deviations from contract documents
 - 10. Suitable blank space for General Contractor and Architect/Engineer stamps
 - 11. Contractor's signed and dated Stamp of Approval
- E. Coordinate submittals into logical groupings to facilitate interrelation of the several items.
 - Finishes which involve Architect / Engineer selection of colors, textures or patterns
 - 2. Associated items requiring correlation for efficient function or for installation

3.9 RESUBMISSION REQUIREMENTS

A. Make resubmittals under procedures specified for initial submittals. Re-submittals shall be a complete submittal as if it were the initial submittal unless otherwise instructed in the

review comments on the original submittal.

- Indicate that the document or sample is a resubmittal Identify changes made since previous submittals
- 2.
- Indicate any changes which have been made other than those requested by the Architect / Engineer. В.

END OF SECTION

SECTION 26 05 19

CONDUCTORS AND CONNECTORS - 600 VOLT

PART 1 - GENERAL

1.1 WORK INCLUDED

- A. Provide electrical conductors, wire and connector work as shown, and specified.
- B. Types: The types of conductors and connectors required for the project include the following:
 - 1. 600V building conductors
 - 2. 600V building conductor connectors
- C. Application: The applications for conductors and connectors required on the project are as follows:
 - 1. Power distribution circuitry
 - 2. Lighting branch circuitry
 - 3. Appliance, receptacle, and equipment branch circuitry
 - 4. Motor branch circuitry
 - 5. Control wiring
 - 6. Line voltage
- Refer to other specific specification sections for voice, video, data, alarm and instrumentation cables.

1.2 QUALITY ASSURANCE

A. UL Label: Conductors and connectors shall be UL labeled.

1.3 REFERENCES

A. Refer to other specific specification sections regarding specialized wiring and connections.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CONNECTORS

- A. General: Except as indicated, provide conductors and connectors of manufacturer's standard materials, as indicated by published product information, designed and constructed as instructed by the manufacturer, and as required for the installation.
- B. Conductors: Provide factory-fabricated conductors of the size, rating, material, and type as indicated for each use. Conductors shall be soft or annealed copper wires meeting, before stranding, the requirements of ASTM B 3, Standard Specification for Soft or Annealed Copper Wire for Electrical Purposes, latest edition.
 - Conductors for control wiring sized #14 AWG through #10 AWG shall be stranded.
 - 2. Conductors for power and lighting shall be stranded. Stranding shall be Class B meeting the requirements of ASTM B 8, Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium Hard, or Soft.
- C. Insulation for standard building conductors: Insulation shall meet or exceed the requirements of UL 83, Standard for Thermoplastic Insulated Wires.

- 1. All wiring inside lighting fixtures shall be temperature rated per NEC.
- 2. Insulation for copper conductors shall be UL Type THHN/THWN, 90 degrees C.
- D. Cable Lubricant: Fire resistant, nonflammable, water based type for standard building conductors. Provide cable lubricants for fire rated cables as recommended by the cable manufacturer.

2.2 COLOR CODES FOR CONDUCTORS FOR BRANCH CIRCUITS AND FEEDERS

A. Color coding for conductors as required by NEC 210.5. Color coding for phase and voltage shall be as required by local codes and local standards. Where such standards do not exist, color coding shall be as follows:

Color Code Table	USE CONTINUOUS COLOR CODED INSULATION THROUGHOUT						
System/ Phase	Α	В	С	N	G	IG	
120/208 3 Ph	Black	Red	Blue	White	Green	Green/Yellow Stripe	
120/240 3 Ph	Black	Orange	Blue	White	Green	Green/Yellow Stripe	
120/240 1 Ph	Black	N/A	Blue				
277/480	Brown	Purple	Yellow	Gray	Green	Green/Yellow Stripe	

Notes to Color Code Table:

- 1. 120/208, 120/240, and 277/480 Volt Systems shall be routed in separate raceways.
- 2. Switched legs of phase conductors for lighting and appliance branch circuits shall be of the same color as described above throughout the entire circuit.
- 3. Conductors shall be the same color from breaker to device or outlet.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Install electrical conductors and connectors as shown, in accordance with the manufacturer's written instructions, the requirements of NEC, the NECA Standard of Installation, and industry practices.
- B. Coordination: Coordinate conductor installation work with electrical raceway and equipment installation work, as necessary for interface.

C. Conductors:

- 1. Provide a grounded (neutral) conductor for each branch circuit. Do not share grounded (neutral) conductors.
- 2. No more than six phase conductors shall be installed in a single raceway. Any combination of phase conductors and grounded (neutral) conductors in any raceway shall not exceed nine.
- 3. When any combination of four or more phase and grounded (neutral) conductors are installed in a raceway, the minimum size for all conductors including equipment ground conductor shall be #10 AWG, and they shall be de-rated accordingly.
- 4. When more than four (4) conductors are size #10 AWG, they shall be installed in

- a one-inch conduit.
- 5. Pull conductors together when more than one is being installed in a raceway. Whenever possible, pull conductors into their respective conduits by hand. Use pulling lubricant when necessary.
- 6. Before any conductor is pulled into any conduit, thoroughly swab the conduit to remove foreign material and to permit the wire to be pulled into a clean, dry conduit.
- 7. Run feeders their entire length in continuous section without joints or splices.
- 8. No wire smaller than #12 AWG shall be permitted for any lighting or power circuit. No wire smaller than #14 AWG shall be used for any control circuit, unless shown otherwise.
- 9. Provide the same size wire form the panelboard to last outlet on circuit. For 20 amp branch circuits operating at 150V or less, provide #10 AWG wire when the first outlet is over 75-feet from the panelboard. For branch circuits operating at 150 to 600 volts, provide #10 AWG wire when the first outlet is over 150-feet from the panelboard.
- 10. Branch circuit voltage drop shall not exceed 3% of rated voltage.
- 11. No tap or splice shall be made in any conductor except in outlet boxes, pull boxes, junction boxes, splice boxes, or other accessible locations. Make taps and splices using an approved compression connector. Insulate taps and splices equal to the adjoining conductor. Make splices or taps only on conductors that are a component part of a single circuit, protected by approved methods. Taps or splices in feed through branch circuits for connection to light switches or receptacles shall be made by pigtail connection to the device.
- 12. Support conductors in vertical raceways, as required by the NEC.
- 13. Do not permit conductors entering or leaving a junction or pull box to deflect to create pressure on the conductor insulation.
- 14. Make joints in branch circuits only where circuits divide. These shall consist of one through circuit to which the branch from the circuit shall be spliced.
- 15. Make connections in conductors up to a maximum of one #6 AWG wire with two #8 AWG wires using twist-on pressure connectors of required size.
- 16. Make connections in conductors or combinations of conductors larger than specified using cable fittings of type and size required for specific duty.
- 17. After a splice is made, insulate entire assembly with UL-approved insulating tape to a value equivalent to the adjacent insulation.
- 18. Make splices and connections in control circuit conductors using UL-approved solderless crimp connectors.
- 19. All conduits shall be installed with an insulated grounding conductor per NEC 250.122. Where green conductor insulation is not available, the ground conductor shall be identified with green phasing tape at all accessible locations.
- 20. Neatly train and lace wiring inside boxes, equipment and panelboards. Provide tie-straps around conductors with their shared neutral conductor where there are more than two neutral conductors in a conduit.
- 21. Clean conductor surfaces before installing lugs and connectors.
- 22. Make splices, taps and terminations to carry full ampacity of conductors with no perceptible temperature rise.
- 23. Provide stranded conductors connected with pressure type connectors / compression fittings and terminal lugs UL listed for the type of conductor used (AL-CU) and correctly sized to the diameter of the bare conductors.
- 24. Run mains and feeders their entire length in continuous pieces without splices or joints.
- 25. Color code conductors.
- 26. Do not install a pull string in conduits containing conductors.
- 27. Conductors shall be the same color from load side of overcurrent protection device to outlet or utilization equipment.
- 28. Spare conductors shall not be installed in any conduit, gutter, raceway, panel or

enclosure unless noted otherwise.

- D. Identification: Label each phase conductor in each junction box with corresponding circuit number, using self-adhesive wire markers.
- E. Splices and Joints:
 - 1. In accordance with UL 486A, C, D, E, and NEC.
 - 2. Aboveground Circuits (No. 10 AWG and smaller):
 - a. Connectors: Solderless, screw-on, reusable pressure cable type, rated 600 V, 220° F, with integral insulation, approved for copper and aluminum conductors.
 - b. The integral insulator shall have a skirt to completely cover the stripped wires.
 - c. The number, size, and combination of conductors, as listed on the manufacturers' packaging, shall be strictly followed.
- F. Aboveground Circuits (No. 8 AWG and larger):
 - 1. Connectors shall be indent, hex screw, or bolt clamp type of high conductivity and corrosion resistant material, listed for use with copper and aluminum conductors.
 - 2. Provide field-installed compression connectors for cable sizes 250 kcmil and larger with not less than two clamping elements or compression indents per wire.
 - 3. Insulate splices and joints with materials approved for the particular use, location, voltage, and temperature. Splice and joint insulation level shall be not less than the insulation level of the conductors being joined.
 - 4. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.
- G. Underground Branch Circuits and Feeders:
 - Submersible connectors in accordance with UL 486D, rated 600 V, 190°F, with integral insulation.

3.2 TESTING

- A. Pre-Energization Check: Before energizing, check cable and conductors for circuit continuity and short circuits. Correct malfunctions.
- B. Service Entrance and Feeder Insulation Resistance Test: Each main service entrance conductor and each feeder conductor shall have its insulation resistance tested after the installation is complete except for connection at its source and point of termination. Testing shall be performed by qualified technicians who have been trained in testing procedures and in the use of all test equipment.
 - 1. Make tests using a Biddle Megger or equivalent test instrument at a voltage of not less than 1000 VDC; measure resistance from conductor to conductor, conductor to neutral (if present) and from conductor to ground. Insulation resistance shall not be less than the following:

Wire Size	Insulation
(AWG)	Resistance (Ohms)
#8	250 K
#6 through #2	100 K
#1 through #4/0	50 K
Larger than #4/0	25 K

- 2. Conductors that do not meet or exceed the insulation resistance values listed above shall be removed, replaced, and retested.
- C. Submittals: Contractor shall furnish instruments and personnel required for tests. Submit

- 4 copies of certified test results to Architect for review. Test reports shall include conductor tested, date and time of test, relative humidity, temperature, and weather conditions.
- D. Voltage and Current Values: The voltage and current in each conductor shall be measured and recorded after connections have been made and the conductor is under load.

SAMPLE DC HIGH VOLTAGE CABLE TEST REPORT (Specification Paragraph 3.2, C)

Date									
Contract and \ Contract (Projournell Circuit Identification (Dwg., Title, N	ect) No.: _ cation:	-	mber)						
Test Equipmer (Make, Model, Applied Test V Normal Oper. Cable Installat (Date) Cable SizeCable Length Cable Materia Temperature	Serial No /oltage Voltage _ iion: New (No. Ye	ars) AWG Cu Cu Lumidity		AI					
CONDUCTOR PER PHASE	A-N	B-N	C-N	A-G	B-G	C-G	A-B	B-C	A-C
		_		_		_			

END OF SECTION

SECTION 26 05 27

EXPANSION OF EXISTING ELECTRICAL GROUNDING SYSTEM

PART 1 - GENERAL

1.1 WORK INCLUDED

- A. Grounding shall conform to the requirements of:
 - 1. National Electrical Code
 - 2. Governing local codes
 - 3. Local Utility Company
- B. Ground effectively and permanently.
 - 1. Verify existing neutral conductor bonding at the main service disconnect and at other new/relocated or reused separately derived systems.
 - 2. All new/relocated conduit or cable tray systems and busway
 - All new/relocated electrical equipment and related current carrying supports or structures
 - 4. All new / relocated metal piping systems
 - 5. All new building structural metal frames

1.2 REFERENCE STANDARDS

- A. ANSI/IEEE Standard 142 "Recommended Practice for Grounding of Industrial and Commercial Power Systems."
- B. ANSI/UL 467 "Safety Standard for Grounding and Bonding Equipment."
- C. Article 250 of the NEC (NFPA 70) for grounding.
- D. NECA Standard of Installation
- E. NETA ATS Acceptance Testing Specifications for Electrical Power Distribution Equipment and Systems
- F. EIA / TIA 607

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

- A. Copperweld
- B. Cadweld
- C. Burndy
- D. O.Z. Gedney
- E. Crouse-Hinds
- F. B-Line

2.2 GROUNDING ELECTRODES

- A. Driven Rod Electrode
 - 1. 3/4" x 10'-0" copper clad grounding electrode, UL listed
 - 2. UL listed grounding electrode connector
 - 3. Approved thermal fusion methods (exothermic)
- B. Metal Frame of Building
- C. Existing grounding electrode system

2.3 DRIVEN ELECTRODE ACCESS BOX AND COVER

- A. Tier 22 Hubbell Tier 22 CDR 20-inch round enclosure.
- B. Provide Tier 22 bolt down traffic rated cover with "GROUND" embossed on top.

2.4 MATERIALS AND COMPONENTS

- A. Reference other sections of this specifications for materials specified there.
- B. Heavy-duty, copper, two bolt type, copper alloy or bronze compression lugs for grounding and bonding applications, in configurations required for particular installation.

PART 3 - EXECUTION

3.1 SYSTEMS 600 VOLTS OR LESS

- A. In the existing service equipment, field verify existing condition of ground bus.
 - 1. Field verify existing bond of the ground bus to the existing service grounding conductor, to the neutral bar.
 - 2. Tighten existing ground lugs and connections.
- B. Connect the grounding electrode conductor between the ground bus and the grounding electrode system.
 - 1. In rigid PVC conduit.
 - 2. Provide thermo fusion connection for each rod ground electrode.
 - All rod electrodes shall be located outside the building in non-paved areas where available. Access cover top shall be flush with finish grade or floor.
 - b. Install rod electrodes as indicated. Install additional rod electrodes as required to achieve specified resistance to ground.
 - c. The minimum distance between driven ground rod electrodes shall be
 - 3. The total ground resistance shall not exceed 10 Ohms for service entrance grounds and 25 Ohms for equipment grounds.
 - a. Where this condition cannot be obtained with one electrode, install a longer electrode, deep-driven sectional electrodes, or additional grounding electrodes until the required ground resistance is obtained.
 - b. Refer to drawings for project specific ground resistance requirements.
- C. Field verify the grounding electrode conductor between the ground bus and the grounding electrode systems are in compliance with the NEC.
- D. Provide an insulated grounding conductor inside all new conduits, raceways, surface raceways and cables used for power distribution. The ground wire shall be bonded to each box. All bonding jumpers shall be routed inside conduit or raceway.

- E. Provide an insulated, isolated equipment grounding conductor in addition to the insulated equipment grounding conductor for all isolated grounding feeders, branch circuits, outlets and receptacles.
- F. Provide all new/relocated conduits terminating in switchgear, transformers, switchboards, and panelboards with grounding bushings, where required and ground wire extended to ground bus in equipment.
- G. Where modifications to the main service disconnect are required, main bus and building grounding electrode conductor installation shall be witnessed by the Architect / Engineer.
- H. Interface with lightning protection system when lightning protection system is specified.
- Locate and install anchors, fasteners, and supports in accordance with NECA "Standard of Installation".
- J. Do not fasten supports to pipes, ducts, mechanical equipment, or conduit.
- K. Do not use spring steel clips and clamps.
- L. Do not use powder-actuated anchors.
- M. Do not drill or cut structural members.
- N. Do not use compression or mechanical connectors underground.

3.3 MISCELLANEOUS REQUIREMENTS

- A. Continuity of the building equipment grounding system shall be maintained throughout the project. Grounding jumpers shall be inside conduit, fittings and boxes and shall be installed across conduit expansion fittings, liquid-tight flexible metal and flexible metal conduit, light fixture pigtails in excess of 6', and other non-electrically continuous raceway fittings.
- B. Grounding conductors and grounding electrode conductor shall be stranded copper conductors and run in a suitable PVC raceway. Grounding conductors and grounding electrode conductor shall be continuous, without joints or splices over their entire length, except as allowed by NFPA 70/NEC.
- C. For separately derived alternating current system grounds, bond the case and neutral of each transformer secondary winding directly to the nearest available effectively grounded structural metal member as required in NEC 250.
- D. Technology/Data/Voice Communications, CATV, CCTV, and MATV Equipment Grounding: Provide grounding electrode conductor from the communications service equipment to the building grounding system as required. Provide #6 ground conductor from telephone/voice/CATV/data company demarcation point to building electrical service entrance ground electrode connection and as required by all local utility companies.
 - New MDF Closets Telecommunications Main Ground Bar (TMGB): Provide Erico Cadweld #B544A028 ground bar with 7/16-inch holes, wall mounted to the telecommunications plywood backboard. Provide one #3 AWG insulated ground conductor from ground bar to building steel. Provide #2/0 AWG insulated ground conductor to the building electrical service ground at the main electrical service disconnect.
 - 2. New IDF Closets Telecommunications Ground Bar (TGB): Provide Erico Cadweld #B542A004 ground bar with 7/16-inch holes, mounted to the

- telecommunications plywood backboard. Provide one #6 AWG insulated ground conductor from ground bar to building steel.
- 3. Provide #2/0 AWG insulated ground conductor between each TMGB and all TGBs.
- 4. Provide #2/0 AWG insulated ground conductor from TMGB to electrical service ground bus at main electrical service switch.
- 5. Bond each equipment rack with #6 AWG insulated ground conductor to the TMGB / TGB.
- 6. Route TMGB TGB ground conductor using the shortest route practical with long radius curves.
- E. Ground new and removed/replaced lighting fixture bodies to the conduit grounding system.
- F. Receptacles: Provide a ground wire bonded to the conduit ground system, except where and insulated isolated grounding receptacle is specified.
- G. Motor Frames: Ground the frame of each motor with a properly sized separate ground wire around flexible conduit.
- H. Provide grounding access well for each driven ground electrode, if used.
 - 1. Access well top shall be flush with finish grade.
 - 2. Provide thermal fusion (exothermic) connectors approved for direct burial.
- I. Ground all light poles and all exterior metal structures supporting conduit, switchgear, or light fixtures.
- J. Exterior Electrical Equipment Racks:
 - Provide driven ground electrode for racks mounted remote from building structure.
 - 2. Where mounted on roof, ground to be building structural steel.
- K. Ground connections to building steel, grounding electrodes and all underground connections shall be by thermal fusion (exothermic).

3.4 COORDINATION

A. General: Coordinate installation of grounding connections for equipment with equipment installation work.

3.5 TESTING

- A. Ground Resistance Test: Perform a ground resistance test for comparison to future inspection and testing data by the Owner. Test shall be performed using a Biddle Megger Earth Tester or equivalent test instrument. The test shall not be performed within 48 hours after the last rainfall.
 - 1. Inspect and test in accordance with NETA ATS except Section 4
 - 2. Grounding and Bonding: Perform inspections and tests listed in NETA ATS, Section 7.13
- B. The Root Mean Square (RMS) AC measurements: The True RMS AC Measure test should be performed for all bonding conductors. The recommended maximum AC current value on any bonding conductor should be less than 1 ampere (A). The recommended maximum DC current value should be less than 500 milliamperes (mA). If abnormally high AC current levels are present on any bonding conductor, a dangerous faulty wiring condition likely exists within the room.

- C. Two-Point Bonding Measurements: The two-Point Bonding test shall be performed for all bonding conductors. This test should be performed using an earth grounding resistance tester configured for a continuity test. The test is performed by connecting the meter leads between the nearest available grounding electrode (e.g., structural steel) and the TMGB or TGB. The recommended maximum value for the bonding resistance between these two points is 0.1 ohms (100 milliohms).
- D. Submittals: Furnish instruments and personnel required for tests. Personnel shall be trained in all aspects of testing grounding systems and shall be formally trained on using all test equipment required. Submit 2 copies of certified test results for Owner's record and submit 4 copies of certified test results to Architect / Engineer for review. Test reports shall include date and time of tests, relative humidity, temperature, and weather conditions.

END OF SECTION

SECTION 26 05 33

CONDUIT SYSTEMS

PART 1 - GENERAL

1.1 WORK INCLUDED

A. Furnish and install a complete system of electrical conduits and fittings.

1.2 REFERENCE STANDARDS

- National Electrical Code A.
- B. Local codes and ordinances
- C. UL
- D. ETL

PART 2 - PRODUCTS

ACCEPTABLE MANUFACTURERS 2.1

Α. Raceways:

- Allied, International Metal Hose, Ipex, Heritage Plastics, Wheatland, Can-Tex, Carlon, Certain-Teed, Anamet, Inc., Electri-Flex Co., Western Tube and Conduit
- PVC Coated RGC: Perma Cote or Plasti-Bond, no exceptions 2.
- Stainless Steel: Calbrite. Gibson 3.
- Aluminum: American Conduit/Sapa, Wheatland, Cooper B-Line, Patriot 4. **Aluminum Products**
- 5. Reinforced Thermosetting Resin Conduit (RTRC): FRE Composites, Champion Fiberglass, United Fiberglass

В. Fittings:

- Appleton, Crouse Hinds, Topaz, Steel City, O.Z. Gedney, Carlon, Heritage 1. Plastics, Raco, Ipex, International Metal Hose, Lew Electric Fittings Co.
- 2. PVC Coated ferrous fittings: Perma-cote or Plasti-Bond, - no exceptions
- Stainless Steel: Calbrite, Gibson, Crouse Hinds 3.
- Aluminum: American Conduit/Sapa, Wheatland, Cooper B-Line, Patriot 4. **Aluminum Products**
- 5. Reinforced Thermosetting Resin Conduit (RTRC): FRE Composites, Champion **Fiberglass**

C. Condulets and Conduit Bodies:

- Appleton, Form 85 1.
- 2. PVC Coated: Perma-cote or Plasti-Bond. - no exceptions
- 3. Stainless Steel: Calbrite, Gibson, Crouse Hinds
- 4. Reinforced Thermosetting Resin Conduit (RTRC): FRE Composites, Champion **Fiberglass**

Steel MC Cable for light fixture whips: D.

- **AFC** 1.
- 2. Southwire
- General Cable 3.
- Kaf-Tech

2.2 GENERAL

- A. The minimum conduit size shall be ¾-inch unless indicated otherwise in Divisions 26, 27 or 28.
 - 1. Branch Circuits: Minimum conduit size for dedicated outlets shall be ¾-inch. Minimum conduit size from branch circuit panel to first outlet box of a multi-outlet branch circuit shall be 3/4-inch. Minimum conduit size from first outlet box to additional outlet boxes of a multi-outlet branch circuit where the conduit is installed above accessible ceilings or inside metal stud walls shall be ½-inch.
 - 2. Feeder Circuits: Minimum conduit size shall be \(^3\)4-inches.
 - 3. Technology, telecommunications, and low voltage systems: The minimum conduit size shall be ³/₄-inches unless noted or indicated otherwise.
 - 4. The minimum conduit size between buildings for technology, voice, data, fire alarm, video, security, surveillance, BMCS, and other telecommunications shall be 2-inch unless indicated otherwise.
- B. The minimum conduit size for flexible metallic conduit for tap connections to individual light fixtures shall be ½ inch, or steel metal clad (MC) cable with insulated ground conductor maximum 6 feet.
- C. Electrical nonmetallic tubing, flexible polyethylene or PVC tubing shall not be used on this project.
- D. BX and AC cable shall not be used on this project.
- E. PVC elbows shall not be used on this project.
- F. Intermediate metal conduit (IMC) shall not be used on this project.

2.3 RIGID METAL CONDUIT

- A. UL labeled, Schedule 40:
 - 1. Mild steel pipe, zinc coated inside and out
 - 2. Aluminum Alloy 6063, T-1 temper
 - Threaded ends
 - Insulated bushings
- B. Fittings shall meet the same requirements as rigid metal conduits.
 - 1. UL labeled
 - 2. Threaded fittings

2.4 ELECTRICAL METALLIC TUBING (EMT)

- A. UL labeled, standard weight:
 - 1. Cold rolled steel tubing, zinc coated inside and out
 - 2. Aluminum Alloy 6005, 6063. Temper T-1
- B. Fittings shall meet the same requirements as EMT conduits.
 - 1. UL labeled
 - 2. Insulated throat connectors
 - 3. Steel fittings with setscrews with lock nuts on threaded ends, no snap locks
 - 4. Cast metal fittings are not approved
 - 5. Uni-couple type connectors are not approved
 - 6. Split ring, anti-short bushings are not approved

2.5 PVC COATED RIGID STEEL WITH URETHANE INTERIOR COATING

- A. The PVC coated galvanized rigid conduit and fittings must be ETL Listed and Verified. The PVC coating must have been investigated and verified by ETL as providing the primary corrosion protection for the rigid metal conduit. Ferrous fittings for general service locations must be ETL Listed with PVC as the primary corrosion protection. Hazardous location fittings, prior to plastic coating must be UL listed for the hazard conditions to which they are to be used. All conduit and fittings must be new, unused material. Applicable UL standards may include: UL 6 Standard for Safety, Rigid Metal Conduit, and UL514B Standard for Safety, Fittings for Conduit and Outlet Boxes.
- B. The PVC coated galvanized rigid conduit and fittings must be ETL Verified to the Intertek ETL SEMKO High Temperature H₂O PVC Coating Adhesion Test Procedure for 200 hours. The PVC coated galvanized rigid conduit must bear the ETL Verified PVC-001 label to signify compliance to the adhesion performance standard.
- C. The conduit shall be hot dip galvanized inside and out with hot galvanized threads.
- D. A PVC sleeve extending one pipe diameter or two inches, whichever is less, shall be formed at every female fitting opening except unions. The inside sleeve diameter shall be matched to the outside diameter of the conduit.
- E. The PVC coating on the outside of conduit couplings shall have a series of longitudinal ribs 40 mils in thickness to protect the coating from tool damage during installation.
- F. Form 8 Condulets, ½-inch through 2-inch diameters, shall have a tongue-in-groove gasket to effectively seal against the elements. The design shall be equipped with a positive placement feature to ease and assure proper installation. Certified results confirming seal performance at 15 psig (positive) and 25 inches of mercury (vacuum) for 72 hours shall be available.
- G. Form 8 Condulets shall be supplied with plastic encapsulated stainless-steel cover screws.
- H. A urethane coating shall be uniformly and consistently applied to the interior of all conduit and fittings. This internal coating shall be a nominal 2 mil thickness. Conduit or fittings having areas with thin or no coating shall be unacceptable.
- I. The PVC exterior and urethane interior coatings applied to the conduit shall afford sufficient flexibility to permit field bending without cracking or flaking at temperatures above 30°F (-1°C).
- J. All male threads on conduit, elbows and nipples shall be protected by application of a urethane coating.
- K. All female threads on fittings or conduit couplings shall be protected by application of a urethane coating.
- L. Independent certified test results shall be available to confirm coating adhesion under the following conditions
 - 1. Conduit and condulet exposure to 150°F (65°C) and 95% relative humidity with a minimum mean time to failure of 30 days. (ASTM D1151)
 - 2. The interior coating bond shall be confirmed using the Standard Method of Adhesion by Tape Test (ASTM D3359).
 - 3. No trace of the internal coating shall be visible on a white cloth following six wipes over the coating which has been wetted with acetone (ASTM D1308).

- 4. The exterior coating bond shall be confirmed using the methods described in Section 3.8, NEMA RN1. After these tests the physical properties of the exterior coating shall exceed the minimum requirements specified in Table 3.1, NEMA RN1.
- M. Right angle beam clamps and U bolts shall be specially formed and sized to snugly fit the outside diameter of the coated conduit. All U bolts shall be provided with plastic encapsulated nuts that cover the exposed portions of the threads.
- N. All fittings, clamps, straps, struts, and hardware used with PVC coated conduit shall be PVC coated or 316 stainless steel

2.6 RTRC CONDUIT FITTINGS AND CONDUIT BODIES

- A. UL listed
- B. Standard wall thickness sizes ½-inch through 4-inch
- C. Underground medium wall thickness sizes 5 and 6-inch
- D. Conduit interface joints above grade, gasket joint below grade
- E. Extra heavy wall for above ground and/or UL Class 1 Division 2 and Class 1 Zone 2 applications.

2.7 STEEL FLEXIBLE CONDUIT

- A. Steel flexible metallic conduit:
 - 1. Zinc coated inside and out
 - 2. 18-inches minimum length, 24-inches maximum length
- B. Steel flexible metallic conduit for tap connections to light fixtures where steel MC Cable fixture whips are not used:
 - 1. 18 inches minimum length; 6 feet maximum length
- C. Liquid tight flexible steel conduit
 - 1. Type L.A. Grounded UL Approved
 - 2. 18-inches minimum length, 24-inches maximum length

2.8 PVC CONDUIT

- A. UL labeled Schedule 40 and Schedule 80
- B. PVC fittings and solvent welded joints
- C. Acceptable PVC condulet manufacturer: Ipex, Cantex

2.9 CONDULETS AND CONDUIT BODIES

- A. UL Labeled
- B. Form 85
- C. PVC Coated: Form 8
- D. LBC Condulets shall be used for size 2 inch and above.

E. LL and LR Condulets shall not be used for 2 inch and above

2.10 ROOF MOUNTED CONDUIT AND BOX SUPPORTS

- A. Conduit supports and pads suitable for direct sunlight, conduit size, weight, quantity and roof system with unistrut supports and accessories. Conduit supports shall allow for conduit expansion and contraction.
- B. Refer to roofing specifications for additional information. The limitations and restrictions contained in any roofing specification shall prevail and supercede these specifications for roof mounted supports for conduits and boxes.
- C. Approved Manufacturer:
 - 1. Portable Pipe Hangers
 - 2. Cooper B-Line C-Port
 - 3. Miro Industries Models 2.5, 2.5-5, 2.5-AH, 12-AH, 16-AH

2.11 ALUMINUM CONDUIT

- A. UL Labeled
- B. Aluminum fittings shall meet the same requirements of aluminum conduits, compatible steel fittings.
 - 1. UL Labeled for use with aluminum conduit.

2.12 STAINLESS STEEL CONDUIT

- A. UL Labeled
- B. Rigid Stainless Steel:
 - 1. Type 304 Stainless Steel
 - 2. Threaded ends
 - 3. Insulated Bushings
- C. EMT:
 - 1. Type 304 Stainless Steel
 - 2. Compression Fittings
 - 3. Insulated Bushings
- D. Fittings, elbows, nipples, strut, device box, clamps straps, etc.
 - 1. Type 304 Stainless Steel

2.14 EXTERIOR IN-GRADE PULL BOXES

- A. Enclosures, boxes and covers are required to conform to all test provisions of the most current ANSI/SCTE 77 "Specification for Underground Enclosure Integrity" for Tier 22 applications. When multiple "Tiers" are specified the boxes must physically accommodate and structurally support compatible covers while possessing the highest Tier rating. All covers are required to have the Tier level rating embossed on the surface. In no assembly can the cover design load exceed the design load of the box. All underground enclosures are to be UL listed as proof that they meet the latest version of the above specification or test reports stamped by a registered Professional Engineer certifying that all test provisions of this specification have been met are required with each submittal:
 - 1. Tier 22 rated for non-deliberate traffic
 - 2. Conduit entry knock-outs as required

- 3. Bolt down covers with SS self-cleaning "auger" style bolts
- 4. Integral or separate bottom
- 5. Adjust to grade option if available
- 6. Extension as required for specified conduit depth
- 7. Place enclosures on a minimum of 6 inches of coarse gravel with a border of 6-inches beyond the enclosures exterior dimension.
- 8. If larger than 24x26x24-inches, brace the interior prior to backfilling and compaction.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install electrical conduits and fittings for all wiring of any type unless specifically specified or instructed to do otherwise. Install conduits and fittings in accordance with local codes and applicable sections of the NECA "Standard of Installation", concealed where possible.
 - 1. Fasten conduit supports to building structure and surfaces; do not support to roof
 - 2. Arrange supports to prevent misalignment during wiring installation.
 - 3. Do not support conduit with wire or perforated pipe straps. Remove wire used for temporary supports.
 - 4. Do not attach conduit to ceiling support wires.
 - 5. Arrange conduit to maintain head room and present neat appearance.
 - 6. Maintain 13-inch clearance between conduit and surfaces with temperatures exceeding 104 degrees F.
 - 7. Cut conduit square using saw or pipe cutter; de-burr cut ends.
 - 8. Bring conduit to shoulder of fittings; fasten securely.
 - 9. Conduit penetrations to all individual motor controllers, VFDs, and motor control cabinets shall only be made at the bottom of the enclosure. For other equipment, provide listed water sealing conduit hubs to fasten conduit to sides or tops of electrical equipment enclosures, device box, gutter, wireway, disconnect, etc.
 - 10. Use suitable caps to protect installed conduit against entrance of dirt and moisture.
 - 11. Ground and bond conduit as required.
 - 12. Identify conduit as required.
 - 13. Route all conduits above building slab perpendicular or parallel to building lines.
 - 14. Do not use no-thread couplings and connectors for galvanized steel, PVC coated galvanized steel, or aluminum rigid conduit.
- B. Group related conduits; support using conduit rack. Construct rack using steel channel; provide space on each for 25 percent additional conduits.
- C. In areas where raceway systems are exposed and acoustical or thermal insulating material is to be installed on walls, partitions, and ceilings, raceways shall be blocked out proper distance to allow insulating material to pass without cutting or fitting. Also provide Kindorf galvanized steel channels to serve as standoffs for panels, cabinets and gutters.
- D. Securely fasten conduits, supports and boxes, to ceiling (not roof deck), walls, with Rawl Plugs or approved equal anchors. Use lead cinch anchors or pressed anchors. Use only cadmium plated or galvanized bolts, screws. Plastic anchors and lead anchors shall not be used for overhead applications.
- E. Provide separate raceway systems for each of the following when specified, indicated or required:
 - 1. 120/208 volt circuits

- 2. 277/480 volt circuits
- 3. Emergency
 - a. Life safety branch
- Voice/Data
- 5. Sound reinforcement
- 6. Theatrical and Architectural Dimming Controls
- 7. MATV/CATV
- 8. Security CCTV
- 9. Security System
- 10. Communications / PA Systems / Sound System Line Input and Speakers
- 11. Fire Alarm
- 12. Lighting and Building Management Control Systems
- F. Unless shown otherwise, do not install conduit in or below concrete building slabs.
- G. Unless shown otherwise, do not install conduit horizontally in concrete slabs.
- H. Roof penetrations shall be made in adequate time to allow the roofing installer to make proper flashing. Conduit for equipment mounted on roof curbs shall be routed through the roof curb. Conduit, gutters, pull boxes, junction boxes, etc. shall not be routed on roof unless specified otherwise. Where specifically indicated to be routed or mounted on the roof, supports shall be as specified, as recommended by roofing manufacturer and roof support manufacturer and as required by NEC. Place supports every five feet along conduit run and within 3 feet of all bends, condulets, and junction boxes. Provide roofing pad under stands at directed by Architect and as recommended by roofing manufacturer and roof support manufacturer. Provide additional unistrut supports and accessories as required.
- I. PVC coated conduit shall have all nicks and cuts to the protective coating repaired using manufacturer's approved touch-up material as recommended by manufacturer. Provide a minimum of two-wraps of 3M-50 type tape over touch-up.
- J. Installation of the PVC Coated Conduit System shall be performed in accordance with the Manufacturer's Installation Manual. To assure correct installation, the installer shall be certified by Manufacturer to install coated conduit. Submit copies of training certification with submittal. Contractor shall coordinate installation with manufacturer's representative for field training and observation of installed PVC coated rigid galvanized conduit and fittings. Manufacturer's representative shall certify the installation is in accordance with manufacturer's installation instructions. Submit copies of installation certification prior to cover-up of underground installation.
- K. All conduit terminations at locations including but not limited to, switchgear, pull boxes, outlet boxes, stub-up, and stub-outs:
 - 1. Provide insulated throat connectors for EMT conduits.
 - 2. Provide insulated bushing on all rigid conduit terminations.
 - 3. Provide locknuts inside and outside of all boxes and enclosures.
 - 4. Provide threaded type plastic bushing at all boxes and enclosures
- L. In suspended ceilings, support conduit runs from the structure, not the ceiling system construction.
 - 1. Do not support from structural bridging.
 - 2. Do not support from metal roof deck.
- M. Completely install each conduit run prior to pulling conductors. All boxes are to be accessible after completion of construction.

- N. All conduits must be kept dry and free of water or debris with approved pipe plugs or caps. Cap or plug conduit ends prior to concrete pours.
- O. Ream ends of conduits after cutting and application of cutting die to remove rough edges.
- P. Install all above concrete slab conduits perpendicular or parallel to building lines in the most direct, neat and workmanlike manner.
 - Cable Tension:
 - a. 0.008 lb./cmil for up to 3 conductors, not to exceed 10,000 pounds.
 - b. 0.0064 lb./cmil for more than 3 conductors, not to exceed 10,000 pounds
 - c. 1000 lbs. per basket grip.
 - 2. Sidewall pressure: 500 lbs./ft.
 - 3. Conduit runs within the following limits of bends and conduit length between pull points shall not exceed the above installation pulling tension and sidewall pressure limits.
 - a. Three (3) equivalent 90-degree bends: not more than fifty feet (50') between pull points.
 - b. Two (2) equivalent 90-degree bends: not more than one hundred feet (100') between pull points.
 - c. One (1) equivalent 90-degree bend: not more than one hundred fifty feet (150') between pull points.
 - d. Straight pull: not more than two hundred feet (200') between pull points.
 - 4. Indicate sizes of conduits, wireway sections, and cable tray sections on the asbuilt drawings.
 - 5. Hold horizontal and vertical conduits as close as possible to walls, ceilings and other elements of the building construction. Conduits shall be kept a minimum of 6 inches clear of roof deck / insulation, and 2 inches clear of above floor deck / insulation.
 - 6. Install conduits to conserve building space and not obstruct equipment service space or interfere with use of space. Conduit shall not be routed on floors, paved areas or grade.
 - 7. Where a piece of equipment is wired from a switch or box on adjacent wall, the wiring shall go up the wall from the box, across at or near the ceiling, and back down to the equipment. Wiring shall not block the walkway between wall and equipment.
 - 8. Horizontal runs of conduit on exposed walls shall be kept to a minimum.
 - 9. Conduit for mechanical / plumbing equipment installed outdoors shall be routed with the associated mechanical / plumbing pipe support rack system where practical, coordinate with Divisions 22 and 23.
 - Conduits installed in public areas, not concealed by architectural ceilings, shall be supported by galvanized steel channel racks to bottom of roof deck or floor deck. Conduits shall be grouped for neat workman-like appearance.
- Q. Install expansion and deflection fittings and bonding jumpers on straight runs which exceed 200-feet, on center, and at 200-feet maximum, on center, on straight runs which exceed 400-feet, and where conduits cross building expansion joints.
- R. Provide grounding bushings at concentric/eccentric knockouts or where reducing washers are used.
- S. Run conduit to avoid proximity to heat producing equipment, piping, and flues, keeping a minimum of 13-inches clear.
- T. Install conduit as a complete system, without conductors, continuous from outlet to outlet and from fitting to fitting. Make up threaded joints of conduit carefully in a manner to ensure a tight joint. Fasten the entire conduit system into position. A run of conduit

between outlet and outlet, between fitting and fitting, or between outlet and fitting shall not contain more than the equivalent of four quarter bends, including those bends located immediately at the outlet or fitting.

- U. Conceal conduit systems in finished areas. Conduit may be exposed in mechanical and electrical rooms, and where otherwise shown or indicated only. Run the conduit parallel and perpendicular to the structural features of the building and support with malleable iron conduit clamps at intervals as required by NEC or on conduit racks, neatly racked and bent in a smooth radius at corners.
- V. Conduit bends shall be factory elbows or shall be bent using equipment specifically designed to bend conduit of the type used to maintain the conduit's UL listing. Conduit hanger spacing shall be 10 feet or less and as required by the NEC for all conduit. Beam clamp attachments to steel joist chords is prohibited. Beam clamps may only be used at beams, no exceptions. Connections to joists shall be made with galvanized channel extended between joist chords or with galvanized channel bearing on the vertical legs of joist chord angles.
- W. Support conduit on galvanized channel, using compatible galvanized fittings (bolts, beam clamps, and similar items), and galvanized threaded rod pendants at each end of channel and secure raceway to channel and channel to structure. Where rod pendants are not used, channel supports are to be secured to structure at each end. Conduit supports are to be secured to structure using washers, lock washers, nuts and bolts or rod pendants; use of toggle bolt "wings" are not acceptable. Support single conduit runs using a properly sized galvanized conduit hanger with galvanized closure bolt and nut and threaded rod. Raceway support system materials shall be galvanized and manufactured by Kindorf, Unistrut, Superstrut, Caddy, or Spring Steel Fasteners, Inc. Provide chrome or nickel-plated escutcheon plates on conduit passing through walls and ceilings in finished areas. Do not support conduit from other conduit, structural bridging or fire rated ceiling system. Do not support more than one conduit from a single all-thread rod support. Provide electrical insulating sleeve or wrapping for aluminum conduit supported by zinc coated supports or fasteners. Channel supports shall have cut ends filed smooth. When installed outside of the building, or in areas subject to moisture, the cut ends shall be painted with ZRC galvanized paint or equivalent.
- X. Terminate all motor connection conduits in mechanical room spaces with a floor pedestal and with "Tee" conduit at motor outlet height for flexible conduit.
- Y. Where conduit is not embedded in concrete or masonry, conduit shall be firmly secured by approved clamps, half-straps or hangers. Tie wire and short pieces of conduit used as supports and or hangers are not approved.
- Z. Where "LB" condulets are used, 2-inches and larger shall be type "LBD".
- AA. No more than 12 conduits containing branch circuits may be installed in junction boxes, pull boxes or gutters.
- BB. Flexible metal conduit and liquid tight flexible metal conduit shall only be used for final connections from junction box to equipment, light fixtures, power poles, etc. They are not to be used in lieu of conduit runs. They shall not be used for wall or roof penetrations unless they are installed in a PVC coated RGC conduit sleeve at least one size larger than the OD of the flexible conduit.
- CC. Where 3-1/2-inch conduit is specified and the required or specified material is Schedule 80 PVC, provide 4-inch conduit.

- DD. "Daisy Chaining" light fixtures installed for lay-in ceiling areas is not allowed. Each light fixture shall have its own fixture whip from junction box. The only exception being light fixtures installed end to end using chase nipples between them, or light fixtures recessed in non-accessible ceilings.
- EE. In above ceiling applications, do not install raceways, junction boxes, gutters, disconnects, etc. within 36 inches directly in front of HVAC control boxes or other equipment requiring access from a point starting from the top of control box / equipment down to ceiling.
- FF. Do not install conduit, junction boxes, etc. within 18 inches of outside edges of roof access openings.
- GG. Install minimum size 2 inch nipple, at least one, between multi-sectional panels for branch circuit independent of feeder conductors.

3.2 CONDUITS

- A. Conduit above grade indoors:
 - 1. Concealed Conduits: EMT with set screw fittings
 - 2. Exposed conduits:
 - a. Below nine feet AFF where not directly attached and against building walls, ceiling, or structure: Rigid metal conduit or x-wall RTRC.
 - b. Where subject to physical damage: Rigid metal conduit or x-wall RTRC.
 - c. Wet locations: PVC coated galvanized rigid steel or aluminum conduit
 - d. Damp Locations: Aluminum rigid conduit or x-wall RTRC.
 - e. Exposed conduits in mechanical rooms or electrical rooms shall be rigid galvanized steel or x-wall RTRC when installed below 18-inches above finished floor.
- B. Conduit installed above grade outdoors:
 - 1. Galvanized rigid steel or x-wall RTRC for conduits up utility poles and where subject to physical damage or where located less than four feet above finished floor.
 - 2. Aluminum or x-wall RTRC where not subject to physical damage and where located four feet above finished floor.
- C. Conduit where indicated underground:
 - PVC Coated Galvanized rigid steel or RTRC conduit elbows and PVC, RTRC, or PVC coated galvanized steel straight run conduits.
 - a. PVC conduit and fittings shall be used only for straight horizontal runs and for vertical risers at site lighting pole bases. Bending straight sections of PVC conduit to less than 25-foot radius or the use of PVC factory bends is not allowed.
 - b. Change in direction of conduit runs, either vertical or horizontal, shall be with RTRC or PVC coated galvanized steel elbows or long sweep bends of straight PVC conduit sections. Long sweep bends of straight PVC 20-foot sections shall have a minimum radius of curvature of 25 feet and a maximum arc of 22.5degrees. Multiple long sweep bends of straight PVC sections shall be separated by a minimum of 20-feet of straight, linear, PVC sections.
 - c. Provide RTRC or PVC coated rigid galvanized steel conduit elbows and fittings with urethane interior coating at all changes in direction with radius of less than 25-feet and at all vertical runs to 18 inches above finished floor elevation. For interior slab penetrations, provide continuous RTRC or PVC coated rigid galvanized steel conduit and fittings with

- urethane interior coating from change in direction to 18 inches above finished floor elevation, except where stubbed-up under and inside equipment or switchgear where conduit shall be terminated at minimum two inches above concrete housekeeping pad.
- d. Elbows for underground electrical service entrance, feeders, transformer primary / secondary, telecommunication, and low voltage conduits shall be RTRC or PVC coated rigid galvanized steel with long radius as follows:
 - 1) Up to 1-inch conduit, minimum 12-inch radius.
 - 2) 1.5-inch conduit, minimum 18-inch radius.
 - 3) 2-inch conduit, minimum 24-inch radius.
 - 4) 2.5-inch conduit, minimum 30-inch radius.
 - 5) 3-inch conduit, minimum 36-inch radius.
 - 6) 3.5 to 6-inch conduit, minimum 48-inch radius.
- e. Conduit for all floor boxes shall be routed below building slab from floor box to nearest column, wall, or as indicated.
- f. Conduits shall not be routed horizontally in building slab, grade beams or pavement.
- 2. Encase all underground conduits in concrete.
 - a. Concrete shall be tinted red throughout with a ratio of 10 pounds of dye per yard of concrete unless prohibited by utility for utility conduits.
 Concrete encasement for utility installed conductors shall be as specified by the utility and comply with their standards and specifications. Where utility does not require but allows concrete encasement of conduits, provide concrete encasement as specified herein.
 - b. Provide minimum 3-inch concrete encasement around conduits.
 - c. Provide conduit spacers for parallel branch/feeder conduits.
 - d. When prior written approval from Owner and Architect to omit concrete encasement of conduits below building slab is given, conduits either specified or approved in writing to be routed under building slab without concrete encasement for electrical branch circuits or voice / data / video / communications horizontal drops or outlets shall be installed 18 inches below finished floor and on select fill. All other conduits, including but not limited to electrical feeders, voice / data / video / communications vertical, riser, tie, trunk, or service cable conduits shall be installed 48inches below finished floor and on select fill.
 - e. Use suitable manufactured separators and chairs installed 4 feet on centers. Securely anchor conduit at each chair to prevent movement during backfill placement.
- 3. Install building voice / data / video / communications main service conduits and electrical service transformer primary and secondary conduits with top of concrete encasement minimum 48-inches below finished grade or pavement. Voice / data / video / communications conduits and electrical service primary conduits for utility owned electrical service transformers shall also comply with the respective utility company requirements and standards. All other underground conduits outside of building other than voice / data / video / communications main service conduits and electrical service transformer primary and secondary conduits shall have top of concrete encasement at 36 inches minimum below finished grade or pavement.
- 4. Provide two "caution" plastic tapes at 6-inches and 18-inches below finished slab, grade, or pavement; identify as specified in Section 26 05 00.
- 5. Conduits located outside building, provide magnetic locator tape at top of first compacted layer of backfill or concrete.
- 6. During construction, partially completed underground conduits shall be protected from the entrance of debris such as mud, sand, and dirt by means of conduit plugs. As each section of the underground conduit is completed, a testing

- mandrel with diameter 1/4-inch smaller than the conduit, shall be drawn through each conduit. A brush with stiff bristles shall be drawn through until conduit is clear of particles of earth, sand, or gravel. Conduit plugs shall then be installed.
- 7. Utility underground conduit for Utility Company cable shall be installed per Utility Company standards, and their specifications for this project.
- 8. Concrete shall be Portland Cement conforming to ASTM-C-150, Type 1, Type III or Type V if specified. Cement content shall be sufficient to product minimum strength of 2,500 PSI.
- 9. Contractor shall stake out routing and location of underground conduits using actual field measurements. He shall obtain approval of the Owner and Architect before beginning trenching, horizontal drilling, and excavation.
- 10. Verify location and routing of all new and existing underground utilities with the Owner and Architect on the job site. Stake out these existing utilities so that they will not be damaged. Stake out new utilities to provide coordination with other trades and with new and existing utilities, easements, property lines, restricted land use areas, and right-of-ways. Verify existing public utilities with Call811.
- D. Conduit shown in concrete walls, floor or roof slab:
 - 1. PVC Coated Galvanized Rigid steel.
- E. Conduits that penetrate concrete slab, or within 100 feet of cooling towers, or at designated corrosive locations.
 - 1. RTRC
 - 2. PVC coated galvanized rigid steel
- F. Connections to equipment mounted on roof, rotating equipment, transformers, and kitchen or food processing equipment, or where flexible conduit is required outdoors.
 - 1. Liquid tight flexible metal conduit (1/2 inch may be used for roof top supply / exhaust fans only)
 - 2. Liquid tight flexible metal conduit for 24-inch maximum length
- G. Light fixture whips:
 - 1. Accessible ceilings and open structure: ½-inch flexible steel conduit or steel MC cable, length not to exceed 6-feet.
 - 2. Non-accessible ceilings: ½-inch flexible steel conduit. Length as required to make a tap at an accessible j-box. Recessed light fixtures in non-accessible ceilings may be daisy chained using the light fixture's integral, UL listed j-box or internal wire way that is accessible through fixture from below the ceiling.
 - 3. Dedicated insulated ground wire.
 - 4. Light fixture whips shall not rest on ceiling grid or tile.
 - 5. Light fixture whips shall not be supported from the ceiling suspension system. Support from the structure with #13 AWG galvanized iron wire pendants and Caddy clips. Do not support conduit from structural bridging. Flexible conduit and steel MC cable shall be kept a minimum of 2 inches clear of roof deck.
- H. Conduits in classified hazardous (Classified) locations:
 - Conduit fittings and seals UL listed for the classification

3.3 CONDUIT PENETRATIONS, SLEEVES AND ESCUTCHEONS

- A. Furnish sleeves for placing in construction for all conduit passing through concrete or masonry walls, partitions, beams, all floors other than grade level, and roofs. A conduit sleeve shall be one size larger than the size of conduit, which it serves except where larger sizes are required for manufactured water, fire, or smoke stop fittings.
 - 1. Sleeves set in concrete floor construction shall be minimum Schedule 40 galvanized steel.

- 2. Sleeves shall extend 3-inches above the finished floor.
- B. Sleeves in concrete or masonry walls shall be RTRC or Schedule 40 galvanized steel. Sleeves shall be set flush with finished wall.
- C. Install manufactured UL listed water, fire, and smoke stop fittings, or caulk around conduit or cables in sleeves with sufficient UL listed fire safe insulation or foam to maintain wall or floor slab fire or smoke rating. Refer to Architecture drawings for locations of rated walls.
- D. Provide Linkseal Mechanical Seals around conduit penetrations through walls below grade. Provide a pull box to install a water stop inside wall penetration. Internally seal low voltage cabling conduit penetrations with waterproof caulking.
- E. Sleeves penetrating walls below grade shall be Schedule 40 black steel pipe with ¼-inch thick steel plate secured to the pipe with continuous fillet weld. The plate shall be located in the middle of the wall and shall be 2-inches wider all around than the sleeve that it encircles. The sleeve should extend a minimum of 24-inches on either side of the penetration. The entire assembly shall be hot-dipped galvanized after fabrication. Do not sleeve or penetrate grade beams.
- F. Conduit passing through the housing on connected equipment shall pass through a cleanly cut hole protected with a threaded steel bushing. Route conduit through roof openings, for piping and ductwork or through suitable roof jack, with pitch pocket. Coordinate location with roofing installation as required.
- G. Conduit passing through fire rated wall shall be sealed with Fire Stop. Route conduit to preserve fire resistance rating of partitions and other elements, using materials and methods under the provisions of Division 7.

3.4 POWER DISTRIBUTION UNDERGROUND FEEDER CONDUIT AND UNDERGROUND SERVICE ENTRANCE CONDUIT

- A. Power underground feeder and service entrance shall be of individual conduit encased in concrete. Unless shown otherwise, the type of conduit used shall not be mixed in any one underground conduit and shall be the size indicated on the drawings. The concrete encasement surrounding the underground conduit shall be rectangular in cross-section, having a minimum concrete thickness of 3-inches, except that conduit for 120V and above shall be separated from control and signal conduits by a minimum concrete thickness of 3-inches. Encasement concrete shall be tinted in red.
- B. During construction, partially completed underground conduits shall be protected from the entrance of debris such as mud, sand, and dirt by means of conduit plugs. As each section of the underground conduit is completed, a testing mandrel shall be drawn through until each conduit is clear of particles of earth, sand, or gravel. Conduit plugs shall then be installed.
- C. Furnish the exact dimensions and location of power underground conduit to be encased in time to prevent delay in the concrete work.
- D. Conduit for service entrance underground conduits shall be as indicated on the drawings.
- E. Primary power underground conduit shall be installed in accordance with utility company standards and the utility company specifications for this project.
- 3.5 TELECOMMUNICATIONS, LOW VOLTAGE AND EMPTY CONDUIT SYSTEM RACEWAYS

- A. Conduit shall be installed in accordance with the specified requirements for conduit and with the additional requirements that no length of run shall exceed 100-feet for 1 inch or smaller trade sizes, and shall not contain more than two 90-degree bends or the equivalent. Pull or junction boxes shall be installed to comply with these requirements. Provide plastic bushings at all conduit terminations. Provide a grounding bushing on each data and voice conduit.
- B. Conduits shall be installed from outlet box to above an accessible ceiling. All cables routed through open spaces (no-ceiling below roof deck or above floor deck) shall be routed in conduit. Telecommunications systems, CATV, CCTV, fire alarm and BMCS cables can be installed above accessible ceilings without conduit. Cables installed above accessible ceiling shall be plenum rated. Conduit rough in of these cables shall include a 90-degree turn-out to an accessible location with insulated bushings on the end of the conduit.
 - 1. Provide conduit from each telecommunications outlet box to accessible ceiling plenum.
 - 2. Provide conduit from each security / surveillance device outlet box to accessible ceiling plenum.
 - 3. Provide two conduits for each multi-media outlet box and each outlet box indicated to contain more than four data, audio, or video drops to accessible ceiling plenum.
 - 4. Provide the following minimum conduits for telecommunications and multi-media wall, floor, and ceiling mounted outlet boxes. Use the largest diameter conduit indicated below unless instructed otherwise in writing from the Architect:
 - a. Non-masonry outlet box: Two 1-inch conduits.
 - b. Masonry outlet box: Two 1-inch conduits, or three 3/4-inch conduits.
 - c. Where indicated differently on plans or where conflicts arise, notify the Architect / Engineer prior to installation.
- C. All conduit in which cable is to be installed by others shall have pull string installed. The nylon pull string shall have not less than 200 lb. tensile strength. Not less than 12-inches of slack shall be left at each end. Provide blank cover plate before substantial completion if box is for a future installation after substantial completion of the project. Conduit shall extend to a minimum six inches above nearest accessible ceiling, and be turned horizontally with plastic bushing at terminations.
- D. Conduits for Building Entrance Facilities:
 - 1. Underground Outside Plant: Install a pull box every 300-feet or after 180 degree turns
 - 2. Inside Plant: Install a pull box every 150-feet or after 180 degree turns. All turns shall be large sweeps, not sharp 90s, with the radius of the sweep at least 10X the diameter of the conduit. Hence, a 4-inch conduit requires a 40-inch minimum radial sweep. If field conditions absolutely mandate a sharp 90-degree bend to be installed, then a pull box shall be installed at that location regardless of distance
 - 3. Building entrance facilities shall not terminate in an IDF or any other space except the MDF.
 - 4. Coordinate the termination location of the building entrance facilities in the MDF with the room layout and equipment configuration.
 - 5. Provide 4-inch conduit unless indicated otherwise. Provide (3) fabric innerducts in each 4-inch conduit.

3.6 EXTERIOR IN-GRADE PULL BOXES

A. Provide pull boxes where specified and as required.

- B. Pull boxes located in pavement shall be set with proper extensions so that top of cover is flush with pavement.
- C. Pull boxes located in non-paved areas shall be set two-inches above surrounding finished grade. Provide 12-inch wide by 8-inch deep reinforced concrete crown around neck or opening and sloped down away from pull box opening.

3.8 IDENTIFICATION

A. Conduit Systems: Provide adequate marking of conduit larger than one inch exposed or concealed in interior accessible spaces to distinguish each run as either a power (120/208V or 277/480V) or signal / telecommunication conduit (Fire Alarm, BAS, BMCS, Security, CCTV, Access Control, Intrusion Detection, Telecom, etc.). Except as otherwise indicated, use orange banding with black lettering. Provide self-adhesive or snap-on type plastic markers. Locate markers at ends of conduit runs, near switches and other control devices, near items of equipment served by the conductors, at points where conduit passes through walls or floors or enters non-accessible construction, and at spacing of not more than 50-feet along each run of exposed conduit. Switch-leg conduit and short branches for power connections need not be marked, except where conduit is larger than 1-inch.

END OF SECTION

SECTION 26 05 35

ELECTRICAL CONNECTIONS FOR EQUIPMENT

1.1 WORK INCLUDED

A. Electrical connections as required and scheduled, and as specified.

1.2 RELATED WORK

A. Refer to other Divisions for specific individual equipment electrical requirements.

1.3 QUALITY ASSURANCE

A. UL Label: Products shall be UL listed to the extent possible.

PART 2 - PRODUCTS

2.1 MATERIALS AND COMPONENTS

- A. General: For each electrical connection indicated, provide a complete assembly including, but not limited to, pressure connectors, terminals (lugs), electrical insulating tape, heat-shrinkable insulating tubing, cable ties, solderless wire nuts, and other items and accessories needed to complete splices and terminations.
- B. Raceways: Refer to related sections.
- C. Conductors and Connectors: Refer to related section. Conductors at equipment terminations shall be copper.
- D. Terminals: Provide electrical terminals as indicated by the terminal manufacturer for the application.

PART 3 - EXECUTION

3.1 INSTALLATION OF ELECTRICAL CONNECTIONS

- A. General: Install electrical connections as shown, in accordance with applicable portions of the NECA Standard of Installation, and industry practices.
- B. Conductors: Connect electrical power supply conductors to equipment conductors in accordance with equipment manufacturer's written instructions and wiring diagrams. Where possible, match conductors of the electrical connection for interface between the electrical supply and the installed equipment.
- C. Splice Insulation: Cover splices with electrical insulation equivalent to, or of a higher rating than, insulation on the conductors being spliced.
- D. Appearance: Prepare conductors by cutting and stripping covering, jacket, and insulation to ensure a uniform and neat appearance where cables and wires are terminated.
- E. Routing: Trim cables and wires to be as short as practical. Arrange routing to facilitate inspection, testing, and maintenance.

- F. Motor Connections: Where possible, terminate conduit in conduit boxes at motors. Where motors are not provided with conduit boxes, terminate the conduit in a suitable condulet, and make motor connections. Conduit passing through the housing on connected equipment shall pass through a cleanly cut hole protected with an approved grommet. For motors 10 HP and larger, at the motor connection do not use wire nuts. Provide copper alloy split bolt connectors or compression lugs and bolts. Insulate connection with Scotch Super 88 vinyl electrical tape over rubber tape, or Tyco Gelcap Motor Connection Kit.
- G. Conduit connections to equipment including, but not limited to, Variable Frequency Drives, Manual and Automatic Transfer Switches, Surge Suppression Devices, motor controllers, electrical disconnects, food service / processing equipment, electronics, control panels and Owner furnished equipment:
 - 1. Make conduit penetrations only at the bottom flat surface of the equipment and only where permitted by the equipment manufacturer to avoid un-intentional water entry. Coordinate installation of electrical connections for equipment with equipment installation work. Where equipment manufacture does not permit a bottom conduit entry, verify with Owner/Engineer and locate the conduit entry at the side surface as close as possible to the bottom of the enclosure.
 - 2. Where conduit originates from an elevation above the conduit entry, provide a "T" condulet below the enclosure's bottom elevation. Provide conduit from the condulet up to the enclosure bottom horizontal surface for electrical connection.
- H. Identification: Refer to Electrical General Provisions for identification of electrical power supply conductor terminations with markers approved as to type, color, letter and marker size by the Architect. Fasten markers at each termination point, as close as possible to each connecting point.
- I. Equipment and Furnishings: Refer to other Divisions. Coordinate power and control provisions shown for equipment and furnishings with the provisions required for the furnished equipment and furnishings. Where the power and control requirements are less than or equal to those specified, modifications to power and control provisions shall be made at no cost as a part of coordination. Where power and control requirements are in excess of those shown, notify the Architect in writing of the requirements.

END OF SECTION

SECTION 26 05 37

ELECTRICAL BOXES AND FITTINGS

1.1 WORK INCLUDED

A. Provide electrical box and fitting work as required, scheduled, indicated, and specified.

1.2 QUALITY ASSURANCE

A. UL Label: Electrical boxes and fittings shall be UL listed.

PART 2 - PRODUCTS

2.1 FABRICATED MATERIALS

- A. Interior Outlet Boxes: Provide galvanized steel interior outlet wiring boxes, of the type, shape, and size, including depth of box, to suit respective locations and installation. Construct with stamped knockouts in back and sides. Provide gang boxes where devices are shown grouped. Single box design; sectional boxes are not acceptable, except for wall mounted electronic displays.
 - 1. Type of Various Locations:
 - Wall mounted interactive media boards, video displays, televisions, electronic signage and similar installations; recessed wall mounted box for power and/or multi-media (low voltage) outlets: Arlington Industries #TVBS 613, 4-gang steel box with white trim plate.
 - b. Technology, data, voice, video and multi-media outlet boxes at locations other than wall mounted interactive media boards, video displays, televisions, electronic signage and similar installations: minimum 4-inch square (2-gang), 3-inch deep interior outlet boxes. Raco #260H large capacity box with ½ through 2-inch knockouts.
 - c. Security, access control, and video surveillance outlet boxes: single gang, 3-inch deep outlet boxes mounted long axis vertically.
 - All other applications: minimum 4-inch square (2-gang) 2-1/8-inch deep boxes.
 - e. Masonry Walls: Galvanized switch boxes made especially for masonry installations; depths of boxes must be coordinated for each installation.
 - f. Surface: Type FS or FD box with surface cover.
 - g. Corrosive locations or natatorium areas: 316 stainless steel construction suitable for the installation.
 - h. Hazardous (Classified) Locations: Explosion proof boxes, seals and fittings.
 - i. Special: Where above types are not suitable, boxes as required, taking into account space available, appearance, and Code requirements
 - 2. Interior Outlet Box Accessories: Outlet box accessories required as for installation, including covers or wall device plates, mounting brackets, wallboard hangers, extension rings, plaster rings for boxes in plaster construction, fixture studs, cable clamps and metal straps for supporting outlet boxes. Accessories shall be compatible with outlet boxes used and meet requirements of individual wiring.
- B. Damp Location Outlet and Damp or Wet Location Switch Boxes: Deep type, hot dipped galvanized cast-metal weatherproof outlet wiring boxes, of type, shape, and size required. Include depth of box, threaded conduit ends, and stainless steel cover plate

- with spring-hinged waterproof caps suitable for application. Include faceplate gasket and corrosion-resistant, tamper / vandal proof fasteners.
- C. Wet Location Outlet Boxes: Hot dipped galvanized cast-iron weatherproof outlet wiring boxes, of type, shape, and size required. Include depth of box, threaded conduit ends.
- D. Junction and Pull Boxes: Galvanized sheet steel junction and pull boxes, with screw-on covers, of type, shape, and size, to suit respective location and installation.
 - 1. Type for Various Locations:
 - a. Minimum Size: 4-inch square, 2-1/8-inches deep.
 - b. 150 Cubic Inches in Volume or Larger: Code gauge steel with sides formed and welded, screw covers unless shown or required to have hinged doors. All boxes mounted above ceiling shall have screw covers. Boxes in all other areas with covers larger than 12-inches shall have hinged with screw covers. Knockouts factory stamped or formed in field with a cutting tool to provide a clean symmetrically cut hole.
 - c. Exterior or Wet Areas: 304 stainless steel NEMA 4X construction with gaskets and corrosion-resistant fasteners
- E. Conduit Bodies: Provide galvanized cast-metal conduit bodies, of type, shape, and size, to suit location and installation. Construct with threaded conduit ends, removable cover, and corrosion-resistant screws.
- F. Bushings, Knockout Closures, and Locknuts: Provide corrosion-resistant punched-steel box knockout closures, conduit locknuts, and insulated conduit bushings of type and size to suit use and installation.
- G. Outlet boxes in fire rated walls: Provide 2-hour rated gasket within box and below cover, equal to Rectorseal Metacaulk box guard and cover guard.

PART 3 - EXECUTION

3.1 INSTALLATION OF BOXES AND FITTINGS

- A. Install electrical boxes and fittings as shown and as required, in compliance with NEC requirements, in accordance with the manufacturer's written instructions, in accordance with industry practices.
- B. Provide recessed device boxes for wall mounted interactive media boards, video displays, televisions, electronic signage and similar installations.
- C. Provide minimum 4-inch square (2-gang), 3-inch deep interior outlet boxes for technology, data, voice, video, and multi-media outlet boxes at locations other than wall mounted interactive boards, video or visual displays. Provide single gang only, 3-inch deep outlet boxes mounted long axis vertically for security, access control, and video surveillance, coordinate with security equipment installation. Provide minimum 4-inch square (2-gang) 2-1/8-inch deep boxes for all other applications. Where indicated differently on plans or where conflicts arise, notify the Architect / Engineer prior to installation. Box extenders or plaster rings shall not be used to increase size. Provide increased box size as required.
- D. Junction and pull boxes, condulets, gutters, located above grid ceilings shall be mounted within 18-inches of ceiling grid. Junction and pull boxes above grid ceilings shall be mounted in the same room served. Junction boxes and pull boxes required for areas with inaccessible ceilings shall be located above the nearest accessible ceiling area. All junction box or pull box openings shall be side or bottom accessible. Removal of light

- fixtures, mechanical equipment or other devices shall not be required to access boxes. Outlet boxes above ceiling for low voltage terminations shall face towards the floor.
- E. Use outlet and switch boxes for junctions on concealed conduit systems except in utility areas where exposed junction or pull boxes can be used.
- F. Determine from the drawings and by measurement the location of each outlet. Locate electrical boxes to accommodate millwork, fixtures, marker boards, and other room equipment at no additional cost to the Owner. The outlet locations shall be modified from those shown to accommodate changes in door swing or to clear interferences that arise from construction as well as modifying them to center in rooms. The modifications shall be made with no cost as part of coordination. Check the conditions throughout the job and notify the Architect of discrepancies. Verify modifications before proceeding with installation. Set wall boxes in advance of wall construction, blocked in place and secured. Set all wall boxes flush with the finish and install extension rings as required extending boxes to the finished surfaces of special furring or wall finishes. Provide wall box support legs attached to stud to prevent movement of box in wall.
- G. Unless noted or directed otherwise at installation, place outlet boxes as indicated on architectural elevations and as required by local codes.
- H. Outlets above counters, mount long axis horizontally. Refer to architectural elevations and coordinate to clear backsplash and millwork.
- I. Provide pull boxes, junction boxes, wiring troughs, and cabinets where necessary for installation of electrical systems. Surface mounted boxes below 9 feet and accessible to the public shall not have stamped knockouts.
- Provide weatherproof boxes for interior and exterior locations exposed to weather or moisture.
- K. Provide knockout closures to cap unused knockout holes in boxes.
- L. Locate boxes and conduit bodies to ensure access to electrical wiring. Provide minimum 12-inch clearance in front of box or conduit body access.
- M. Secure boxes to the substrate where they are mounted, or embed boxes in concrete or masonry.
- N. Boxes for any conduit system shall not be secured to the ceiling system, HVAC ductwork or piping system.
- O. Provide junction and pull boxes for feeders and branch circuits where shown and where required by NEC, regardless of whether or not boxes are shown.
- P. Coordinate locations of boxes in fire rated partitions and slabs to not affect the fire rating of the partition or slab. Notify the Architect in writing where modification or construction is required to maintain the partition or slab fire rating.
- Q. Exterior boxes installed within 50-feet of cooling towers or water treatment areas shall be of 304 stainless steel, weatherproof NEMA 4X construction.
- R. Identification: Paint the exterior and cover plates of building interior junction boxes and pull boxes located above accessible ceilings or non-finished areas to correspond to the following colors:
 - 1. Orange: 480/277 VAC systems

- 2. Light Blue: 240 VAC three phase delta systems.
- 3. Red All Emergency circuits, regardless of load, and fire alarm system.
- 4. Light Green 120/208 VAC 3 phase and 120/240 VAC single-phase systems
- 5. Yellow Building Management and Control System BMCS
- 6. White Security and Surveillance equipment circuits
- S. All box covers shall be labeled with Panel ID and circuit numbers of all circuits available in box using permanent black marker. Boxes containing main feeders are to list where fed from and load (example "MSB to Panel HA"). Information listed is to be legible, markovers are not acceptable. Multi-sectional panel numbers are not to be listed on covers (example "LA2" referring to Panel LA sec. 2 is to be listed as "LA"). Label covers for special applications explaining contents (example "Emerg. Gen. Annunciator controls", "IDF ground"). Do not attach box covers that have both sides painted or labeled differently. In public areas where boxes are painted same color as room per architect, label inside covers. Boxes that are not used shall be labeled as not used and include panel ID. Example "Not Used Panel LA". Unused raceways not in sight of panel shall be terminated in a box and labeled not used and include panel identification.
- T. Align adjacent wall mounted outlet boxes for switches, thermostats, and similar devices.
- U. Use flush mounting outlet box in finished areas unless specifically indicated as being used with exposed conduit.
- V. Locate flush-mounting box in masonry wall to require cutting of masonry unit corner only. Coordinate masonry cutting to achieve neat opening.
- W. Do not install flush mounting box back-to-back in walls; provide minimum 6 inches with stud separation. Provide minimum 24 inches with separation in acoustic rated walls.
- X. Secure flush mounting box to interior wall and partition studs. Accurately position to allow for surface finish thickness. Provide UL listed materials to support boxes in walls to prevent movement. Ensure box cannot be pushed inside wall.
- Y. Use stamped steel bridges to fasten flush mounting outlet box between studs.
- Z. Install flush mounting box without damaging vapor barriers, wall insulation or reducing its effectiveness.
- AA. Use adjustable steel channel fasteners for hung ceiling outlet box.
- BB. Do not fasten boxes to ceiling support wires.
- CC. Support systems are to hang vertically straight down. All-thread supports, when used, are not to be installed at an angle or bent.
- DD. Use gang box where more than one device is mounted together. Do not use sectional box.
- EE. Use gang box with plaster ring for single device outlets.
- FF. Support outlets flush with suspended ceilings to the building structure.
- GG. Mount boxes to the building structure with supporting facilities independent of the conduits or raceways.

- HH. Where multiple feeders are in one pull box, conductors shall be wrapped with 3M No. 7700 Arc and fireproof tape.
- II. Provide plaster rings of suitable depth on all outlet boxes. Face of plaster ring shall be within 1/8 inch from finished surface.
- JJ. Equip boxes supporting fixtures designed to accept fixture studs with 3/8-inch stud (galvanized malleable iron) inserted through back of box and secured by locknut. Boxes not equipped with outlets shall have level metal covers with rust-resisting screws.
- KK. Do not mount junction boxes above inaccessible ceilings or in inaccessible spaces. Do not mount junction boxes above ceilings accessible only by removing light fixture, mechanical equipment or other devices. At inaccessible spaces use junction box furnished with light fixture or light fixture wiring compartment UL listed for through wiring.
- LL. No more than 12 conduits containing branch circuits may be installed in any junction or pull box.
- MM. All junction boxes shall be protected from building finish painters' over spray and from fire proofing overspray. Remove protective coverings when painting and fire proofing are complete.
- NN. Bond equipment grounding conductor to all junction and pull boxes.
- OO. Do not mount boxes or conduit bodies on walls directly above electrical panels or switchgear located next to walls.
- PP. Do not mount boxes or conduit bodies within 18 inches of outside edges of roof access openings.
- QQ. Box extenders or plaster rings shall not be used to increase the Code mandated cable capacity of a box. Provide proper size box.

3.2 ADJUSTING

- A. Adjust flush-mounting outlets to make front flush with finished wall material.
- B. Install knockout closures in unused box openings.

END OF SECTION

SECTION 26 05 53

IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Furnish and install items for identification of electrical products installed under Division 26.

1.2 SUBMITTALS

A. Submit product data

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. W.H. Brady Co.
- B. Carlton Industries, Inc.
- C. Seton Nameplate Co.

2.2 MATERIALS

- A. Nameplates: Provide engraved three-layer laminated plastic nameplates with white letters on a black background.
- B. Wire and Cable Markers: Provide vinyl markers with split sleeve or tubing type, except n manholes provide stainless steel with plastic ties.
- C. Underground Warning Tape
 - 1. Manufactured polyethylene material and unaffected by acids and alkalis.
 - 2. 3.5 mils thick and 6 inches wide.
 - 3. Tensile strength of 1,750 psi lengthwise.
 - 4. Printing on tape shall include an identification note BURIED ELECTRIC LINE, and a caution note CAUTION. Repeat identification and caution notes over full length of tape. Provide with black letters on a red background conforming to APWA recommendations.
- D. Panelboard Directories: Provide a typed circuit directory for each panelboard. Mount circuit directory in a permanent, clear lexan card holder locate don inside of door on panelboard.
- E. Conduit Markers: Flexible vinyl film with pressure sensitive adhesive backing and printed markings.
 - 1. Electrical conduit markers shall include three identifying titles on an orange background except as noted.
 - a. Typical
 - 1) Type Example AC 60 Hertz
 - 2) Load Example Lighting and Power
 - 3) Voltage Example 480 VAC / 3 Phase
 - b. As Noted
 - 1) If more than one type of power is available in a conduit, then it shall be marked with the title "Electrical" on orange background.
 - 2) Limit switch controls, air conditioning controls and diffuser controls shall be marked with the title "Control" on an orange background.

2. Conduit that contains protective or communications systems shall have the exact content and title on blue background and installed and located as specified for conduit.

F. Conduit Markers and Letter Size

Dimensions

Outside Diameter of Conduit in Inches	Width of Color Band in Inches	Height of Letter & Numerals in Inches
½ to 1-1/4	8	1/2
1-1/2 to 2	8	3/4
2-1/4 to 3-1/4	10	1
3-1/2& Larger	12	1-1/4

PART 3 - EXECUTION

3.1 IDENTIFICATION OF EQUIPMENT

A. Identification of Equipment:

- All major equipment shall have a manufacturer's label identifying the manufacturer's address, equipment model and serial numbers, equipment size, and other pertinent data. Take care not to obliterate this nameplate. The legend on all nameplates or tags shall correspond to the identification shown on the Operating Instructions.
- 2. A black-white-black (red-white-red for emergency circuits) 3 layer laminated plastic engraved identifying nameplate shall be permanently secured to each switchboard, distribution panel, motor control center, transformer, panelboard, safety disconnect switch, wireway, busduct plug, terminal cabinet, surge protection device, capacitor, individual motor controller, contactor and communications (voice, data, video) cabinet or rack with stainless steel screws.
 - a. Identifying nameplates shall have 1/2-inch high, engraved letters. For equipment designation and ½-inch letters indicating source circuit designation, (i.e.: "PANEL HA –served from MDP-6").
 - b. Each switchboard, distribution panel, and motor control center branch circuit device shall have a nameplate showing the load served in ¼-inch high, engraved letters.
 - c. Enclosed switches, starters, circuit breakers and contactors: Provide neatly typed label inside each motor starter and contactor enclosure door identifying motor or load served, nameplate horsepower, full load amperes, code letter, service factor, and voltage / phase rating. Provide Phenolic nameplate on cover exterior to indicate motor or load served, panel(s) and circuit(s) serving load(s), description and location of control controlling contactor (i.e.: contactor controlled by switch in Room A107.), and panel and circuit feeding line side of control transformer. Example of label for lighting / receptacle contactor: Lighting Contactor

Panel HA 2,4,6 Control circuit – Panel HA 2,4 Location – West parking Lot Pole Lights Switched - BMCS

3. Cardholders and directory cards shall be furnished for circuit identification in panelboards. Cardholder shall be located on inside of panel door and shall be in a metal frame with clear plastic front, or in a clear plastic schedule holder. Circuit lists shall be typewritten. Circuit descriptions shall include explicit description and identification of items controlled by each individual breaker, including final graphics room number or name designation and name of each item served. If no building appointed room number or name is given, list locations per the following examples – A. Storage in Rm 100 – B. Office in Rm 100 – C. Storage west of Rm. 100. List corridors as "corridors". Identify circuits controlled by contactors using a separate

notation for each contactor used. List notation at bottom of schedule stating the circuits are controlled by a contactor, list exact location of contactor, and how switched. Do not use architectural room number designation shown on plans. Obtain final graphics room number identification from Architect's final room number graphics plan. All locations served by breakers shall be listed on schedule. Panel schedule shall be large enough to contain all information required. Also refer to Section 26 24 16.

- 4. Permanent, waterproof, black markers shall be used to identify each lighting and power grid junction box, clearly indicating the panel and branch circuit numbers available at that junction box. Where low voltage relay panels are used for lighting control, identify the low voltage relay panel and number in addition to the branch circuit panel and number.
- 5. Pull Boxes, Transformers, Disconnect Switches, etc.: Field work each with a name plate showing identity, voltage and phase and identifying equipment connected to it. The transformer rating shall be shown on the panels or enclosures. For an enclosure containing a motor starter, the nameplate shall include the Owner's motor number, motor voltage, number of motor phases, motor load being serviced, motor horsepower, and motor full load current. Nameplates shall also indicate where panel is fed from.
- B. Prohibited Markings: Markings intended to identify the manufacturer, vendor, or other source from whom the material has been obtained are prohibited for installation in public, tenant, or common areas within the project. Also prohibited are materials or devices that bear evidence that markings or insignias have been removed. Certification, testing (example, Underwriters Laboratories), and approval labels are exceptions to this requirement.
- C. Warning Signs: Provide warning signs where there is hazardous exposure associated with access to or operation of electrical facilities. Provide text of sufficient size to convey adequate information at each location; mount permanently in an appropriate and effective location. Comply with industry standards for color and design.
- D. Wire and Cable Markers: Provide vinyl cloth markers with split sleeve or tubing type, except in manholes provide stainless steel with plastic ties.
- E. Wire and Cable Labeling: Provide wire markers on each conductor in all boxes, pull boxes, gutters, wireways, contactors, and motor controllers and load connection. Identify with panelboard / switchboard branch circuit or feeder number for power and lighting circuits, and with control wire number as indicated on equipment manufacturer's shop drawings for control wiring.
- F. Underground Warning Tape: Thomas and Betts or approved equal. Six-inch wide plastic tape, colored red or orange with suitable warning legend describing buried electrical lines; telephone lines and data lines. All underground electrical conduits shall be so identified. Tape shall be buried at a depth of 6-inches below grade and directly above conduits or ductbanks. Provide magnetic marking tape below all underground electrical conduits.

3.2 INSTALLATION

- A. Degrease and clean surfaces to receive nameplates.
- B. Install nameplates parallel to equipment lines.
- C. Secure nameplates to equipment fronts using screws or rivets. Secure nameplate to inside face of recessed panelboard doors in finished locations.
- D. Embossed tape will not be accepted.
- E. Provide underground tape at all electrical installations.

3.3 CONDUIT MARKERS

A. Location of Identifying Markers: At each end of conduit run and at intermediate points 50' on center maximum.

END OF SECTION

SECTION 26 12 15

DRY-TYPE TRANSFORMERS

PART 1 - GENERAL

1.1 WORK INCLUDED

- A. Work Included: Low Voltage (less than 600 Volt) transformer work as shown, scheduled, indicated, and specified.
- B. Types: Transformers required for the project include dry-type transformers.

1.2 QUALITY ASSURANCE

- A. Standards: Transformers shall be designed and tested in accordance with NEMA and ANSI C33.4 and C89.2 standards.
- B. UL Label: Transformers shall be UL labeled.

1.3 STANDARDS

- A. UL-506
- B. ANSI C75.11
- C. NEMA ST-20
- D. DOE 2016 Efficiencies

1.4 SUBMITTALS

A. Include outline and support point dimensions of enclosures and accessories, unit weight, voltage, KVA, and impedance ratings and characteristics, sound level, tap configurations, insulation system type and rated temperature rise.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

- A. Schneider Electric Square D
- B. General Electric
- C. Siemens
- D. Eaton
- E. Acme
- F. Hammond

2.2 MATERIALS AND COMPONENTS

A. Except as otherwise indicated, provide transformer manufacturer's standard materials and components as indicated by published product information, designed and constructed as recommended, and as required for a complete installation.

2.3 DRY-TYPE TRANSFORMERS

- A. General: Indoor transformers shall be dry-type, multiple-winding transformers, rated as shown, and shall have manufacturer's standard impedance.
- B. Construction: Transformer core shall be constructed of cold-rolled, oriented, high permeability silicon steel, either formed as a coil or laminated.
- C. Taps: Transformers 15 to 30 kva shall have two 5% taps, one above and one below normal. Transformers 45 kva and larger shall have four 2-1/2% taps, two above and two below normal.
- D. Temperature Rating: Transformers shall use an insulation system that has been temperature classified and approved by UL. Transformers shall have a maximum winding temperature rise of 150°C with an insulation system temperature classification of 220°C.

E. Load Rating:

- 1. Transformers shall be capable of operating at 100% of nameplate rating continuously while in an ambient temperature not exceeding 40°C.
- Transformers shall be capable of meeting the daily overload requirement of ANSI C57.12.
- F. Vibration Isolation: Each transformer core and coil shall be mounted in the transformer enclosure on rubber vibration isolators.
- G. Sound Rating: The transformer shall have sound levels equal to or lower than those ratings established in NEMA ST-20 and as shown in the following table. Sound ratings shall be measured in accordance with ANSI C89.91.

Transformer Rating (kva)	Maximum Sound Level	
(600 Volt Class)	Decibels: NEMA ST-20	
0 to 9	40	
10 to 50	45	
51 to 150	50	
151 to 300	55	
301 to 500	60	

H. Testing:

- 1. The manufacturer shall have tested each transformer for proper operation before shipment.
- 2. The manufacturer shall have performed the following additional tests on units identical to the design type being supplied. Furnish proof of performance of these tests in the form of test data sheets upon request:
 - a. Sound levels.
 - b. Temperature rise tests.
 - c. Full-load core and winding losses.
 - d. Percent regulation with 80 and 100% power factor load.
 - e. Percent impedance.
 - f. Exciting current.
 - g. Insulation resistance.

PART 3 - EXECUTION

3.1 INSTALLATION OF TRANSFORMERS

A. General: Install transformers where shown, in accordance with the manufacturer's written instructions and industry practices to ensure that the transformers meet the specifications. Comply with requirements of NEMA and NEC standards, and applicable

- portions of NECA Standard of Installation, for installation of transformers. Transformers shall be floor mounted. Ceiling mounted transformers are not acceptable.
- B. Dry-Type Transformer Mounting: Indoor, floor mount transformer on properly sized Amber/Booth Type RVD rubber-in-shear vibration isolators. Only where specifically indicated on the plans or approved in writing by the Owner/Engineer, transformers shall be trapeze mounted using properly sized Amber/Booth type BRD rubber-in-shear hangers. Transformer enclosures shall make no contact with wall surfaces.
- C. Conduit: Conduit directly connected to transformer enclosures shall be flexible liquid tight conduit extending for a minimum of 18-inches and a maximum of 24 inches from transformer enclosure as measured along the conduit centerline. Include a ground wire, size in accordance with NEC, internal in each length of flexible conduit.
- D. Grounding: Ground and bond transformers as a separately derived system unless noted otherwise, refer to NEC 250. Installation of bonding strap or bonding conductor between ground and neutral bus shall be witnessed by the Engineer prior to applying power and terminating secondary conductors.

3.2 TESTING

- A. Insulation Tests: Before energizing, check transformer windings for continuity.
- B. Winding Current: During initial no-load energizing, check current in each primary winding.
- C. Tap Settings: Measure and record load current and voltage of transformers while loaded to verify proper transformer tap settings.
- D. Submittals: Furnish instruments and personnel required for tests. Submit four copies of certified test results to Engineer for review. Reports include transformer tested, date and time of tests, relative humidity, temperature, and weather conditions.
- E. Notification: Notify Engineer in writing of any deviation from manufacturer's pre-shipment test data.

END OF SECTION

SECTION 26 24 14

TESTING, MAINTENANCE, AND MODIFICATIONS TO EXISTING SWITCHBOARDS

PART 1 - GENERAL

1.1 WORK INCLUDED

- A. Work Included: Switchboard work to existing switchboards 600 volts or less as shown, scheduled, indicated, and specified.
- B. Types: Switchboard work for the project includes power distribution switchboards.

1.2 QUALITY ASSURANCE

- A. Original Manufacturer's Installation and Maintenance Instructions
- B. NEMA Compliance: Comply with National Electrical Manufacturers Association (NEMA) Standard PB2, "Dead-Front Distribution Switchboards."

1.3 SUBMITTALS

- A. Indicate Original Manufacturer's Installation and Maintenance Instructions for testing, exercising, cleaning, and lubrication where available.
- B. Include electrical characteristics including voltage, frame size and trip ratings, withstand ratings, and time current curves of all new equipment and components.
- C. Original Manufacturer's Inspection Report

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Replacement parts shall be manufactured by Original Equipment Manufacturer, (OEM) when available. When OEM parts are not available, third party, UL recognized, manufactured parts shall be used. Provide written confirmation on Manufacturer's letterhead indicating OEM parts are not available.

2.2 MATERIALS AND COMPONENTS

A. Except as otherwise indicated, provide switchboard manufacturer's standard materials and components as indicated by published product information, designed and constructed as recommended, and as required for a complete installation.

2.3 DEAD-FRONT DISTRIBUTION SWITCHBOARDS-NEW SWITCHBOARD SECTIONS AND/OR ACCESSORIES

- A. New Indicating Instruments where indicated: Switchboard instrumentation shall be digital display, panel mounted, rated for 120V, 60 hertz. The display unit shall be UL listed in accordance with UL 508. The electronic metering device shall have the following features:
 - 1. Voltmeter, phase to phase and phase to ground or neutral.
 - 2. Current, per phase RMS and 3 phase coverage.
 - 3. Demand current per phase.
 - 4. Power factor per phase and 3 phase average.

- 5. Real power, 3 phase total.
- 6. Reactive power, 3 phase total.
- 7. Apparent power, 3 phase total.
- 8. Frequency.
- 9. Average demand real power.
- 10. Adjustable demand interval (5 to 60 minutes).
- 11. Nonvolatile memory.
- 12. Password protected set-up and reset.
- 13. 3 current transformers with primary to match bus size and 5 ampere secondary with metering class accuracy.
- 14. Full scale readouts with the following accuracy:
 - a. Current and voltage measurement
 b. Power and energy
 c. Frequency
 d. Power Factor
 +/-0.1%
 +/-0.2%
 +/-0.5%
 +/-1.0%
 - e. Data update time 0.5 seconds(4 wire)
- 15. Metering Output.
 - a. Pulse output based on kWh, kvarh, or kVAh.
 - o. Analog output 4-20mA based on kWh, kvarh, or kVAh.
- 16. Monitoring:
 - a. Harmonic analysis through 63rd with THD and TIF.
 - b. Event recorder.
 - c. Waveform capture.
 - d. Data logger.
 - e. Triggered trace memory.
- 17. Communication:
 - a. Front port and dual rear mounted RS485 ports.
 - b. BACnet protocol (coordinate with BMCS contractor).
 - c. Mini RTU: digital 4 in/4 out.
 - d. Analog 1 in/4 out.
 - e. Local/remote display of all values.
- 18. Software:
 - a. Windows based software shall be provided to enable setpoint programming.
- B. New Feeder and Branch Protective Devices where indicated or required, greater than 1,200 Amps shall be individually mounted:
 - Molded case circuit breakers:
 - a. Adjustable: current, I²t settings, ground fault (where required), instantaneous trip, and short time trip. Solid state trip true RMS sensing, without fusible elements; 100-percent continuous current rating.
 - b. Energy Reducing Maintenance System switch with local status indicator (ERMS).
 - c. Shunt trip capability and wiring to terminal block for remote shunt trip switch wiring termination weather remote trip device is indicated or not.
 - 2. Fusible switches:
 - a. Each switch shall have an individual door over the front, equipped with a voidable interlock that prevents the door from being opened when the switch is in the ON position unless the interlock is purposely defeated by activation of the voiding mechanism. All switches shall have externally operated handles.
 - b. Fused switches 600 Amps and below, equipped for class J fuses.
 - c. Fused switches 601 Amps and above shall be equipped with Class R or L rejection type fuse holders. Class RK1 or L of ampere rating and type as indicated on the plans suitable for application of the system.
 - d. When required by the latest edition of the NEC or the AHJ, 1,200 Amp

switches regardless of fuse size installed shall have Energy Reducing Maintenance System switch with local status indicator (ERMS).

- C. Feeder and Branch Protective Devices 1,200 Amps and below where indicated or required shall be group mounted:
 - 1. Molded case circuit breakers:
 - a. Greater than 250 Amp: Solid state true RMS sensing with adjustable: current, I²t settings, ground fault (where required), instantaneous trip, and short time trip; 80-percent continuous current rating.
 - b. 250 Amp and smaller: Solid state true RMS sensing with fixed current setting by rating plug or dial. Breaker shall have adjustable instantaneous trip function with short time tracking.
 - c. 1,200 Amp frame circuit breakers regardless of trip shall have Energy Reducing Maintenance System switch with local status indicator (ERMS).
 - Fusible switches:
 - Quick-make, quick-break units utilizing the double-break principle of circuit interrupting to minimize arcing and pitting and shall conform to the ratings shown.
 - b. Individual door over the front, equipped with a voidable interlock that prevents the door from being opened when the switch is in the ON position unless the interlock is purposely defeated by activation of the voiding mechanism. All switches shall have externally operated handles.
 - c. 600 Amps and below equipped for Class J fuses.
 - d. 601 Amps and above shall be equipped for Class R or L rejection type fuse holders.
 - e. When required by the latest edition of the NEC or the AHJ, 1,200 Amp fused switches regardless of fuse size installed shall have Energy Reducing Maintenance System switch with local status indicator (ERMS).

PART 3 - EXECUTION

3.1 INSTALLATION, MAINTENANCE, AND MODIFICATION OF SWITCHBOARDS

- A. Comply with the requirements of NEMA and NEC, and NECA Standard of Installation, for installation of switchboards. Comply with Original Manufacture's Operation and Maintenance Instructions for testing and periodic maintenance.
- B. Torque all existing and new bus connections and tighten mechanical fasteners to manufacturer's specifications.
- C. Install fuses, of ratings shown, in each new or modified fused switch.
- D. Adjustment: Adjust operating mechanisms for free mechanical movement. Adjust circuit breaker time characteristic curves as directed by the OEM for coordination with downstream overcurrent devices.
- E. Existing Indicating Instruments: Test and calibrate to original manufacturer's specifications. Replace batteries in existing digital instruments where batteries are required. Replace defective indicating instruments with new digital instruments. Provide new digital indicating instruments where indicated on the drawings.
- F. Cleaning: Vacuum the interior of the existing switchboard enclosures of all dust and foreign matter. Clean all existing switch contacts according to manufacturer's instructions.

- G. Lubrication: Lubricate all existing exposed switch contacts, pivot points and bearings according to manufacturer's instructions.
- H. Remove any existing circuit breakers or fusible switches that are not functional or not suitable to be reused as "spares".
- I. Provide filler plates where required.
- J. Existing switchboards which indicate rust or corrosion shall be repainted; paint indoor switchboards with ALKYD enamel coat, and outdoor switchboards with epoxy enamel coat to match existing color. Do not paint over labels or listings.
- K. Mimic bus: Update the existing mimic bus or provide new mimic bus to indicate busing, connections, and devices in single line form on the front panels of the switchboard using red colored plastic strips or match exiting material and color format, fastened flat against the panel face with screws.

3.2 TESTING

- A. Provide the services of the Original Manufacturer's Field Services personnel for initial testing at no additional cost to the Owner. The Original Manufacturer's Field Services personnel shall provide at minimum, a visual inspection of the existing switchboards and shall provide a written report on the Original Manufacturer's letter head with recommendations regarding the existing condition and recommendations to further testing, maintenance, and in regard to the specified modifications of the existing switchboard. The report shall include any deficiencies of the existing switchboard in relation to each component's intended function. In addition, provide deficiencies of the existing switchboard with regard to the current National Electrical Code. Provide the written report to the Architect within 14 days of notice to proceed and prior to any demolition or construction. All other testing, maintenance, and modifications shall be provided by the Contractor as specified at no additional cost to the Owner.
- B. Pre-Energization Checks: Before energizing, check switchboards for continuous of circuits and for short circuits. Test existing Bolted Pressure Switches according to Original Manufacture's Instructions.
- C. Switchboard Insulation Resistance Test: Each switchboard bus shall be insulation resistance tested after installation and modification is complete except for line and load side connections. Tests shall be made using Biddle Megger or equivalent test instrument at a voltage of not less than 1000 vDC. Resistance shall be measured from phase-to-phase and from phase-to-ground. Minimum acceptable value for insulation resistance is 2 megohms.
- D. Ground Fault Protection System Test: After completion of construction and before final acceptance testing, the ground fault protection system shall be field-tested and reset to the manufacturer's settings for both current and time by a representative of the manufacturer's engineering service department. After the test, set ground fault to 50 percent of the largest overcurrent device rating in the switchboard. Ground fault setting shall not exceed 1200 amperes.
- E. Provide thermal infrared scan of the existing switchboard under full load prior to testing/maintenance and modifications and of the modified and new switchboard sections after construction as directed and witnessed by Owner. Provide digital video disc (DVD) documentation with test results for comparison between prior condition and post construction modifications and future tests.

F. Submittals: Furnish instruments and personnel required for tests. Submit 4 copies of certified test results to the Architect for review. Test reports shall include switchboard tested, date and time of test, relative humidity, temperature, and weather conditions.

SECTION 26 24 16

PANELBOARDS AND ENCLOSURES

1.1 WORK INCLUDED

A. Panelboards and enclosures, including cabinet, as shown, scheduled, indicated, and specified.

1.2 QUALITY ASSURANCE

A. UL Standards: Panelboards and enclosures shall confirm to all applicable UL standards and shall be UL labeled.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

- A. Schneider Electric Square D
- B. General Electric Co.
- C. Siemens
- D. Eaton

2.2 MATERIALS AND COMPONENTS

- A. General: Panelboards shall be dead-front type equipped with fusible switches or circuit breakers as shown and as required.
- B. The overcurrent protective device short circuit, coordination and arch flash studies performed by the overcurrent protective device manufacturer shall be used by the respective switchgear vendor(s) to select appropriate equipment, switchgear, and overcurrent protective device characteristics such as but not limited to: equipment bracing, AIC rating, circuit breaker frame size and trip settings, and fuse type/class. The appropriate equipment suitable and required by the studies for code compliance shall be included with the submittal data for review and provided at no additional cost to the Owner. The appropriate equipment recommended by the studies for enhanced selective coordination or enhanced arc flash energy reduction beyond code compliance shall be included with the submittal data for review and consideration purposes by the engineer.
- C. Busing Assembly: Panelboard phase, neutral, and equipment ground busing shall be copper. Bus structure and mains shall have ratings as shown and scheduled. Furnish a bare uninsulated ground bus inside each panelboard enclosure. Two section panelboards shall be connected with copper cable, with an ampacity conforming to the upstream overcurrent device. Neutral bus termination quantity for branch circuit panelboards shall match or exceed the maximum number of single pole circuit breakers the panelboard will accept.
- D. Main circuit breakers and feeder / branch circuit breakers:
 - 1. Less than 125 Amps: Thermal magnetic with factory fixed trip.
 - 2. 125-600 Amps: Thermal magnetic with adjustable instantaneous trip of 5X 10X with short time tracking.

- 3. 601 Amps and larger: Solid state true RMS sensing with adjustable: current set by rating plug or adjustable dial, I²t settings, ground fault (where required), instantaneous trip, and short time trip; 80-percent continuous current rating.
- 4. Provide permanent lock-off device where indicated or required for circuit breaker to be used as a remote safety disconnect switch.
- 5. General requirements:
 - a. Make prepared space provisions for additional breakers or fused switches so that no additional bus or connectors will be required to add circuit breakers or fused switches in the available device mounting space.
 - b. Two and three pole breakers shall have internal common trips.
 - c. All circuit breakers used as the main or branch mounted back-fed main shall be bolt-on. All circuit breakers used in 600 Amp and smaller panelboards shall be bolt-on breakers. Circuit breakers for distribution panelboards rated 601 amps and larger shall have plug-on or bolt-on circuit breakers.
 - d. Branch circuit panelboard shall have interrupting capacity as shown or as required, but in no case less 10k AIC for 120/208/240-Volt systems, and 18k AIC for 277/480-Volt systems.
 - e. 15 and 20 Amp circuit breakers for lighting circuits shall be UL listed switch duty (SWD).
 - f. Personnel ground fault interrupter (GFI) circuit breakers, where shown, shall be maximum 5 mA ground fault trip and shall include a TEST button.
 - g. Equipment ground fault interrupter (EGFI/EGPD) circuit breakers, where shown or required shall be 30mA ground fault trip and shall include TEST button.
 - h. Circuit breakers with 1,200 Amp and larger frame shall have Energy Reducing Maintenance Switching with local status indicator (ERMS).
- E. Fusible Switches for distribution panelboards: Fusible switches shall be quick-make, quick-break type. Each switch shall be enclosed in a separate steel enclosure. The enclosure shall employ a hinged cover for access to the fuses. Interlock cover with the operating handle to prevent opening the cover when the switch is in the ON position. This interlock shall be constructed so that it can be overridden for testing fuses without interrupting service. The switches shall have padlocking provisions in the OFF position. Switches shall include positive pressure rejection type fuse clips for use with UL Class J fuses and be UL labeled for 200,000 AIC.
- F. Spaces: Where space for future breakers or switches is shown, panelboard enclosure shall include removable blank panels or knockouts to allow installation of future breakers or switches, prepared spaces, and panelboard busing shall be complete, including required connectors.
- G. Integrated Equipment Rating: Do not apply series ratings. Each panelboard, as a complete unit, shall have a short-circuit rating equal or greater than the available short circuit current. Rating shall have been established by tests on similar panelboards with the circuit breakers or fusible switches installed.
- H. Panelboard Enclosures:
 - Provide sheet steel enclosures, minimum 16-gauge nominal thickness, with multiple knockouts, unless shown otherwise. Provide all NEMA 1 panelboard fronts with spring-loaded door pulls, and flush lock and key, panelboard enclosures keyed alike to match the Owner's standard key system; coordinate with Owner.
 - 2. All NEMA 1 enclosure panelboards shall be hinged "door-in-door" type with

interior hinged door with hand operated latch or latches, as required providing access only to circuit breaker or fusible switch operating handles, not to exposed energized parts. Outer hinged door shall be securely mounted to the panelboard box with factory bolts, screws, clips, or other fasteners, requiring a tool for entry. Hand operated latches are not acceptable. Push inner and outer doors shall open left to right. Manufacturer hardware (OEM), screws, and bolts shall be used to secure dead fronts and covers. Do not used third party hardware. Do not use power tools to secure panel hardware. Provide gray powder coat finish over a rust inhibitor.

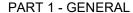
- 3. Equip with interior circuit directory frame, card, and clear plastic covering for panelboards.
- 4. Panelboards located in kitchen preparation or natatorium areas shall have Type 316 stainless steel front, door, and trim with a NEMA 1 rating for the entire enclosure.
- 5. Panelboards at exterior locations shall be NEMA 4X Type 316 stainless steel.
- Panelboards at hose down areas, cooling towers, in greenhouses, and other corrosive locations shall be NEMA 4X 316 stainless steel.
- 7. Enclosure shall be for recessed or surface mounting as shown or as required.
- 8. Enclosures shall be fabricated by the same manufacturer as panelboards to be enclosed. Multi-section panelboards shall have same physical dimensions.

PART 3 - EXECUTION

3.1 INSTALLATION OF PANELBOARDS AND ENCLOSURES

- A. General: Install panelboards and enclosures, as shown, including electrical connections, in accordance with the manufacturer's written instructions, the requirements of NEC, NECA Standard of Installation, and industry practices. Circuit breakers shall be factory installed except for required field modifications due to actual site conditions.
- B. Coordination: Coordinate installation of panelboards and enclosures with conductor and raceways installation work.
- C. Anchoring: Anchor enclosures to walls and structural surfaces ensuring that they are permanently and mechanically secured.
- D. Directory Card: Provide a typed circuit directory card(s) upon completion of work. Directory card shall be of super heavy-weight index card stock, 110 lb, white. Directory shall include type of load (i.e.: receptacles, lighting, exhaust fan, etc.) and location (i.e.: Room 102, Office, etc.) Room number shall be identified as the actual graphics room number assigned to the space and not the room number identified on the Plans. Circuits with shunt trip shall be identified with the control circuit operating the shunt trip (i.e.: Kitchen Hood No. 2). Shunt trip breakers with common trip circuit shall be grouped in the panelboard (i.e.: circuits 1, 3, 5 and 7).
- E. Fuses: Install fuses, of the ratings and class shown.
- F. Circuit Arrangement: Branch circuits shall be arranged to provide the best possible phase balance, unless shown otherwise.
- G. Panelboards not intended to be used as service entrance (SE) rated or for establishing a separately derived neutral system shall have the factory installed neutral to ground bonding screws and straps removed and disposed of.
- H. Recessed or flush mounted panelboards: Terminate spare conduits in junction box 18-inches above accessible ceiling close to panelboard location. Label junction box cover as

"not used" and include panel identification.


- 1. Provide (3) 1-inch and (3) ¾-inch spare conduits above accessible ceiling to j-box from each panelboard section.
- 2. Where recessed panelboard is located above another building floor, also provide (3) 1-inch and (3) 3/4-inch conduits to j-box in ceiling space on floor below.
- I. Conductors shall be bent neatly opposite the fuse switch or circuit breaker to which they are to be attached. Vertically installed conductors shall be neatly tie-wrapped. Conductors shall be connected in a neat and professional manner. Conductors brought in from the top or bottom of the cabinet shall be bent neatly opposite the fuse or circuit breaker to which they are to be attached. Each conductor shall be run along the full height of the panel and returned to the circuit breaker or fuse location to allow relocation of the conductor to any position along the bus. Panelboard shall be cleaned of all construction debris prior to substantial completion review. Neutral and grounding conductors shall be installed similar to the phase conductors.
- J. Circuit breakers and conductors installed for SPD devices shall be located at the top or bottom of the panelboard in respect to the location of the SPD device. Route all conductors to the SPD device with straight as possible run, using longest sweep bends and the shortest conductor length possible. Twist all SPD conductors and secure with tie straps wherever possible.
- K. Install copper ground bus for copper ground conductors. Ground conductors size #1 and larger are to be landed to panelboard enclosure with mechanical lugs and not to ground bus.
- L. Install panels so that breaker number 1 is the top left breaker.
- M. In panels that contain multi-layered neutral bus, install neutrals beginning with the back neutral bus row and work forward. Do not make up neutrals on front neutral bus row unless all other rows are full.
- N. Label breaker mounting space with stick-on number labels.
- O. Mount the fully aligned panelboard such that the maximum height of the top circuit breaker above the finished floor shall not exceed 78-inches. Mount panelboards as high as practical and such that the bottom of the cabinets will not be less than 6 inches above the finished floor.

3.2 TESTING

A. Before energizing, energization, check for continuity of circuits and short circuits.

SECTION 26 24 25

ENCLOSED SWITCHES

1.1 WORK INCLUDED

- A. Safety and disconnect switch work where required, scheduled, indicated, specified, and required. For switches indicated or rated above 1,200 Amps, provide switchboard construction as specified for switchboards.
- B. UL Approved: Safety and disconnect switches shall have UL approval and the UL label.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

- A. Schneider Electric Square D
- B. General Electric Co.
- C. Siemens
- D. Eaton

2.2 ENCLOSED SWITCHES

- A. General: Provide heavy duty type, dead-front, sheet steel enclosed, surface-mounted safety switches of the type and size indicated. Safety switches shall be rated for the voltage of the circuit where they are installed. Safety switches used as motor disconnects shall be rated for the motor horse power served.
- B. The overcurrent protective device short circuit, coordination and arch flash studies performed by the overcurrent protective device manufacturer shall be used by the respective switchgear vendor(s) to select appropriate equipment, switchgear, and overcurrent protective device characteristics such as but not limited to: equipment bracing, AIC rating, circuit breaker frame size and trip settings, and fuse type/class. The appropriate equipment suitable and required by the studies for code compliance shall be included with the submittal data for review and provided at no additional cost to the Owner. The appropriate equipment recommended by the studies for enhanced selective coordination or enhanced arc flash energy reduction beyond code compliance shall be included with the submittal data for review and consideration purposes by the engineer.

C. Switch Mechanism:

- 1. Safety switches shall be quick-make, quick-break type with permanently attached arc suppressor. Constructed so that switch blades are visible in the OFF position with the door open. The operating handle shall be an integral part of the box, not the cover. Switch shall have provision to padlock in the OFF position. Safety switches shall have a cover interlock to prevent unauthorized opening of the switch door when the switch mechanism is in the ON position, or closing of the switch mechanism when the switch door is open.
- 2. Cover interlock shall have an override mechanism to permit switch inspection by authorized personnel. Current-carrying parts shall be constructed of high conductivity copper with silver-plated switch contacts. Lugs shall be suitable for copper conductors and front removable.

D. Neutral: Provide safety switches with number of switched poles indicated. Where a neutral is present in the circuit, provide a solid neutral with the safety switch. Where a ground conductor is present in the circuit, provide a separate solid ground with the safety switch.

2.3 ENCLOSED SWITCHES WITH OVERCURRENT AND/OR GROUND FAULT PROTECTION

- A. Overcurrent protective devices 1,200 Amps and below:
 - 1. Where switch is intended as a building service disconnect provide solid neutral and ground bus and service entrance SE rating.
 - 2. Molded case circuit breakers:
 - a. Greater than 800 Amp: Solid state true RMS sensing with adjustable: current, I²t settings, ground fault (where required), instantaneous trip, and short time trip; 80-percent continuous current rating.
 - b. 800 Amp and smaller: Solid state true RMS sensing with fixed current setting by rating plug or dial. Breaker shall have adjustable instantaneous trip function with short time tracking.
 - c. 1,200 Amp and larger frame circuit breakers regardless of trip shall have Energy Reducing Maintenance System switch with local status indicator (ERMS).
 - 3. Fusible switches:
 - a. Quick-make, quick-break units utilizing the double-break principle of circuit interrupting to minimize arcing and pitting and shall conform to the ratings shown.
 - b. Individual door over the front, equipped with a voidable interlock that prevents the door from being opened when the switch is in the ON position unless the interlock is purposely defeated by activation of the voiding mechanism. All switches shall have externally operated handles.
 - c. 600 Amps and below equipped for Class J fuses.
 - d. 601 Amps and above shall be equipped for Class R or L fuses.
 - e. When required by the latest edition of the NEC or the AHJ, 1,200 Amp fused switches regardless of fuse size installed shall have Energy Reducing Maintenance System switch with local status indicator (ERMS).
- B. Ground Fault Interrupter (GFI) protection: Where shown or required, ground fault protection shall be achieved with adjustable pickup for ground fault currents, field-adjustable from 200 amperes and instantaneous to 60 cycle time delay. The ground fault protection system shall include necessary current sensors, internal wiring, and relays to coordinate opening the monitored faulted circuits.
 - Ground fault protection shall be set at minimum setting for both current and time during construction. The manufacturer shall include in the submittal data the minimum setting of the device and the recommended setting for normal building operation.
 - 2. The ground fault system shall be factory-tested before shipment as specified:
 - The manufacturer shall provide a factory ground fault protection system test for circuit testing and verification of tripping characteristics. The manufacturer shall pass predetermined values of current through the sensors and measure the tripping time for each phase and neutral. The measured time-current relationships shall be compared to the trip-characteristic curves. If the ground fault device trips outside the range of values indicated on the curve, the ground fault device shall be replaced or recalibrated.
 - b. Relays, electrically operated switches, shunt-trip switches, circuit breakers, and similar items shall have proper voltages applied to their

- circuits and satisfactory operation demonstrated.
- c. Upon completion of the factory ground fault protection system test, the current and time on each ground fault device shall be set to minimum values.

2.4 ENCLOSURES

- A. Enclosures in indoor locations shall be NEMA 1 unless shown otherwise.
- B. Enclosures in exterior locations shall be NEMA 4X stainless steel.
- C. Enclosures at kitchen and food preparation locations, exterior kitchen supply and exhaust fans, hose down areas, cooling towers, in greenhouses, and in other corrosive areas shall be NEMA 4X. stainless steel.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Install safety and disconnect switches where required or indicated, in accordance with the manufacturer's written instructions, requirements of the NEC, NECA Standard of Installation, and industry practices. Provide fuse identification label when fused switches are required showing type and size inside door of each switch. Include devices in coordination study to indicate overcurrent devices will selectively coordinate.
- B. Location: Provide safety switches within 50' and in sight of motor served. There shall be minimum code required clearance in front of safety switch and a clear path in which to access the switch. (i.e.: not having to walk and/or stand on obstacles such as drain pans on floor to service).
- C. Supports: Provide all safety and disconnect switches with galvanized angle or other supports where mounting on wall or other rigid surface is impractical. Switches shall not be supported by conduit alone. Where safety and disconnect switches are mounted on equipment served, the switch shall not inhibit removal of service panels or interfere with access areas, not void the warranty of the equipment served. Provide mounting hardware that will allow removal of safety and disconnect switches with common work tools. Do not utilize drive pin anchors through enclosure.
- D. Ground Fault Interrupter (GFI) test and settings: Where adjustable ground fault interrupter settings are provided or required, after completion of construction and before final acceptance testing, the ground fault protection system shall be field-tested and reset to the manufacturer's settings for both current and time by a representative of the manufacturer's engineering service department. After the test, set ground fault to 50-percent of the overcurrent device rating.
- E. Safety and Disconnect Switches: Install disconnect switches for motor-driven equipment, appliances, motors, and motor controllers within sight of the controller position unless indicated otherwise.
- F. Variable Frequency Drive (VFD) Warning Plaque: Provide VFD warning plaque at safety disconnect switches which are located down-stream of VFDs. Secure plaque to disconnect switch or immediately adjacent to disconnect switch with fasteners. Plaque shall be Yellow-White-Yellow 3-layer plastic laminated engraved with: "WARNING" (1/2 Inch Letters). "TURN OFF VFD BEFORE OPENING THIS SWITCH FOR MAINTENANCE." (1/4 inch letters).

- G. Provide disconnect switch for electric duct heaters.
- H. Where disconnect switch is used or indicated as the utility service building disconnect, provide main bonding jumper and neutral to ground bond connected to the building's grounding system. Do not bond neutral to ground when there is a neutral to ground bond upstream from the same derived neutral system serving the disconnect switch.

3.2 TESTING

A. General: Before energizing, check for continuity of circuits and short circuits.

END OF SECTION

SECTION 26 24 30

FUSES

PART 1 - GENERAL

1.1 WORK INCLUDED

- A. Fuse work as shown and scheduled, and as specified.
- B. Types: Fuses required for the project include the following:
 - 1. 250 volt current limiting fuses
 - 2. 600 volt current limiting fuses

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Manufacturers: Provide products produced by Bussman or Littlefuse.

2.2 CURRENT LIMITING FUSES - 600 VOLTS AND LESS

A. General: Provide 200,000 amperes interrupting capacity (AIC) current-limiting fuses of the current ratings shown and voltage rating equal to or greater than the voltage at the point of application.

B. Types:

- 1. Fuses in circuits supplying individual motors, groups of motors, or loads including motors, 600 amperes or less, shall be UL Class RK1 or Class J, time delay fuses, Bussman LPS-RK (600V) LPJ-SP (600V), LPN-RK (250V).
- 2. Fuses in circuits supplying individual motors, groups of motors, or loads including motors, 601 to 4000 amperes, shall be UL Class L time delay fuses, Bussman KRPC "HI-CAP".
- 3. Fuses in circuits supplying other than motor loads, 600 amperes or less, shall be UL Class RK1, time delay fuses, Bussman LPS-RK (600V), LPN-RK (250V).
- 4. Fuses supplying surge protection devices (SPD) shall be surge rated for use with SPD devices.

2.3 SPARE FUSES

A. General: Provide spare fuses in the amount of 10% of each type and size installed, but not less than 3 spares of a specific size and type. Deliver to the Owner at the time of project acceptance. Fuses shall be encased in a labeled steel enclosure with padlock provision, to be wall mounted where directed.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Install fuses in fuse holders immediately before energizing of the circuit where the fuses are installed. Fuses shall not be installed and shipped with equipment.
- B. Labels: Place fuse identification labels, showing fuse size and type installed, inside the cover of each switch.

END OF SECTION

FUSES 26 24 30-1

SECTION 26 27 73

LINE VOLTAGE WIRING DEVICES

1.1 WORK INCLUDED

A. Provide wiring device work as shown, scheduled, indicated, and specified. Low voltage and/or digital control switches required for lighting controls and lighting control systems shall be as specified and required for the low voltage and / or digital control lighting system. Refer to drawings or other specification sections for low voltage / digital lighting control systems. Cover plates for lighting control systems shall be as specified in this section unless specifically required otherwise by the low voltage / digital control device bulkhead or form factor.

1.2 QUALITY ASSURANCE

- A. UL Label: Wiring devices shall be UL labeled.
- B. NEMA Standard WD1 and WD6.
- C. Fed. Spec. WC596, W-S-896

1.3 SUBMITTALS

- A. Submit a sample of each style and color of 120V, 20A duplex receptacle and each 120/277V switch with related cover plate. Attach plate to wiring device and label back side of plate with job description with permanent black marker.
- B. Submit manufacturer's product data sheet for each style of device and plate on the project.
- C. Submit drawings of plans, elevation and sections of receptacles and outlets in casework, cabinetwork and built-in place furniture. Coordinate dimensions with millwork shop drawings and related architectural drawing series.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

- A. Toggle Switches, Straight Blade Devices, Interior Cover Plates:
 - 1. Leviton, Mfg. Co., Inc.
 - 2. Pass and Seymour, Inc.
 - 3. Hubbell, Inc.
 - 4. Eaton Arrow Hart

B. Dimming

- 1. Leviton
- 2. Lutron

2.2 WIRING DEVICE COLOR

A. Device color shall be gray except 20A, 125V receptacles and toggle wall switches which are directly supplied from an emergency source shall be red. Provide equivalent hospital grade devices where red is not available in grade specified. Verify with Owner / Architect prior to submitting for approval. Color change kits as required for dimming switches.

2.3 RECEPTACLES

- A. Industrial grade tamper resistant duplex receptacles, 2 pole, 3 wire grounding, with ground connection and poles internally connected to mounting yoke, with metal mounting straps, locking plug-tail or back and side wired with screw type terminals, molded phenolic compound, NEMA configuration indicated.
 - 1. 20A, 125V grounded duplex NEMA #5-20R: Leviton #M5362-SGX
 - 2. 20A, 125V isolated ground duplex NEMA #5-20R: Leviton #MT562-IGX
 - 3. 20A, 125V ground fault circuit interruption (GFCI) NEMA #5-20R: Leviton #T7899-HGX
 - 20A, 125V grounded tamper and weather resistant (WR) receptacles: Leviton #TWR20-GY
- B. Heavy-Duty Simplex: Single heavy-duty type receptacles, with green hexagonal equipment ground screw, with metal mounting straps, back wiring, black molded phenolic compound, NEMA configuration as indicated.
 - 1. 30A, 125V grounded single NEMA #5-30R: Leviton #5371 with #80728X cover plate.
 - 2. 30A, 250V, grounded, 3-wire, 2-pole NEMA #6-30R: Leviton #5372 with #80728X cover plate or weatherproof cover plate.
 - 3. 20A, 125/250V, grounded, 4-wire, 3-pole NEMA #14-20R: Hubbell #8410 with Leviton #84004-40 cover plate.
 - 4. 20A, 125V, grounded, NEMA 5-20R, Leviton #5801W with Leviton #84004-40 cover plate.
- C. Hospital grade receptacles, 2 pole, 3 wire grounding, with ground connection and poles internally connected to mounting yoke, with metal mount straps, locking plug-tail or back and side wired with screw type terminals, molded phenolic compound, NEMA configuration indicated.
 - 1. 20A, 125V grounded duplex NEMA #5-20R: Leviton #8300-X
 - 2. 20A, 125V isolated ground duplex NEMA #5-20R: Leviton #8300-LIG (orange)
 - 3. 20A, 125V ground fault circuit interruption (GFCI) with indicator light: Leviton NEMA 5-20R-8898-HGX
 - 4. 20A/125V Tamper Resistant Duplex NEMA 5-20R: Leviton 8300-SGX
- D. USB Charger / Tamper-Resistant Receptacle:
 - 1. 20A, 125V, NEMA 5-20R, 2.1A, 5VDC USB 2-port: Leviton #T5830-GY
- E. USB Charger, 5VDC pigtail power supply / Tamper-Resistant Receptacle:
 - 1. 15A, 125V, NEMA 5-15R; 3.0A, 5VDC USB 1-port with pigtail power supply with on/off switch for AV/USB signal repeaters: Hubbell #AVPS15XX.

2.4 WALL SWITCHES

- A. Toggle: Industrial grade flush toggle switches, with mounting yoke insulated from mechanism, equipped with plaster ears, switch handle, back and side-wired screw terminals.
 - 1. Single-pole, 120/277V, 20A switch: Leviton #1221-2X
 - 2. Double Pole 120/277V. 20A switch: Leviton #1222-2X
 - 3. Three-way, 120/277V, 20A switch: Leviton #1223-2X
 - 4. Four-way, 120/277V, 20A switch: Leviton #1224-2G
 - 5. Single-pole, 120/277V, 20A switch, red pilot light: Leviton #1221-PL
- B. Rotary key operated switch.
 - 1. Single-pole, 120/277V, 20A key operated switch: Leviton #1221-KL
 - 2. Two-pole, 120/277, 20A key operated, Leviton #1222-2KL.

- 3. Three-way, 120/277V, 20A key operated switch: Leviton #1223-3KL
- 4. Four-way, 120/277V, 20A key operated switch: Leviton #1224-4KL
- 5. Key switches shall be all keyed alike to match the Owner's standard key system. Coordinate with Owner.
- C. Local relay switch for remote control low voltage switching systems: Hubbell #HBL-1556 GY, single pole double throw, center off, momentary switch, 277V, 15A; Hubbell #HBL 1556L for key lock type.
- D. Leviton #5657-2, single pole double throw, center off, momentary contact, 277V, 20A

2.5 WALL DIMMERS

- A. Wall Box Dimmers: Self-contained, wall box mounted, linear slide square law dimmers with ON/OFF switch. Dimmers shall operate continuously at rated load in an ambient temperature up to 40°C and an input of 100 to 277V. Heat sink fins may be removed only as approved by Owner / Engineer for narrow ganging after applying de-rating.
 - 1. Single-pole, 120/277V, 1000/2308 watt incandescent / magnetic low voltage: Leviton #AWSMT-MBW.
 - 2. Single-pole, 120/277V, 1500/3463 watt incandescent / magnetic low voltage, 2-gang heat sink: Leviton #AWSMT-MCW.
 - 3. Single-pole, 120/277V, 1920/4432 watt LED / fluorescent 0-10V dc, 75 mA current sink: Leviton #AWSMT-7DW.
 - 4. Three, four or five way remote switch: Leviton #AWSRT-00W.
 - 5. Color change kit as required.

2.6 GFCI – GROUND FAULT CIRCUIT INTERRUPTER, BLANK FACE

A. 20A, 125V, GFCI, switch rated, blank face feed through, Hubbell #GFBF20GYL, gray finish, stainless steel cover plate black laser engraved with device protected, (example: DRINKING FOUNTAIN GFCI).

2.7 INTERIOR WALL COVER PLATES

- A. Satin finish Type 302 stainless steel.
 - 1. Type 302 stainless steel screws satin finish.
 - 2. Laser engraved with black letters, Panel Name, Circuit Number and Voltage
 - 3. Wiring devices connected to emergency generator: Laser engraved with black letters "EMERGENCY"
- A. Smooth finish, molded of high impact nylon.
 - 1. Plate color shall match device and/or toggle color.
 - 2. Fastening screws shall match plate color.

2.8 EXTERIOR COVER PLATES

A. Thomas & Betts CKSUV, cast aluminum standard depth, locking mount, while-in-use, wet location, universal configuration.

2.9 CORD REELS

- A. Cord Reels:
 - Receptacle only, 20A, Hubbell #HBL45123GF220WM1 with #HBL340PB pivot base
 - 2. Hand Lamp only; Hubbell #HBL50162FL with #HBL340PB pivot base (automotive repair garage location)

PART 3 - EXECUTION

3.1 INSTALLATION

- A. All wiring devices for receptacles and wall switches shall be of the same manufacturer throughout unless otherwise noted.
 - 1. Only Lutron dimming controls shall be used with Lutron dimming electronic ballast and LED drivers.
 - 2. Key switches shall be as specified and as approved by Owner.
 - 3. Submit color sample for each specified color to Architect.
- B. Install wiring devices where shown, in accordance with manufacturer's written instructions, requirements of NEC, and in accordance with industry practices. Do not install devices until wall construction and wiring is completed.
- C. Install receptacles and switches only in electrical boxes that are clean, free from excess building materials, debris, and similar matter.
- D. Install wiring devices plumb and aligned in the plane of the wall, floor, or ceiling in where they are installed.
- E. Install switches in boxes on the strike side of doors as hung. Install a uniform position so the same direction will open and close the circuit throughout the project. Where more than one switch is in the same location, install switches in a multi-gang box with a single cover plate.
- F. Provide a plate for every receptacle, switch, unused rough-in only outlet and other wiring devices. Fasten all plates outdoors with type 302 Allen Head "tamper-proof" screws.
- G. Mounting heights of all wiring devices shall comply with current Accessibility Standards and local codes, except where wiring devices are indicated for special purpose and access Is only required by maintenance or service personnel.
- H. Provide tamper resistant receptacles protected upstream by switch rated GFCI blank face feed through device in all child day care, pre-kindergarten and similar areas designated for occupancy by pre-K, or child day care occupants. Locate blank face GFCI near light switches at same height as light switches.
- I. Provide tamper resistant receptacles in all kindergarten through fifth grade areas designated for occupancy by kindergarten through fifth grade.
- J. Refer to Architectural drawing, elevations, etc. for exact location of wiring devices where indicated on the Architectural plans. Coordinate location of all wiring devices with other specialty items and millwork and avoid conflicts. Coordinate with all trades to avoid conflicts during construction.
- K. Provide GFCI receptacle for drinking fountains. Locate receptacles for electric drinking fountains below drinking fountain so that the receptacle is accessible and concealed as much as practical from public view by the drinking fountain cowling. Locate under upper drinking fountain at dual level fountains.
- L. Provide weatherproof and weather resistant (WR) NEMA 3R, GFCI, 20A, 125V duplex receptacles outdoors where indicated and within 25-feet of all new electrically operated mechanical equipment mounted outdoors and on roofs.
- M. Provide GFCI, 20A, 125V duplex receptacles at all receptacle locations in Central Plant, mechanical rooms, electrical rooms, custodial rooms, instructional food preparation

areas, electric drinking fountains, vending machines, vocational shops, science prep and science room work counters, kitchen and food preparation areas, and all locations where receptacles indicated are within six feet of water sources, sinks, lavatories, faucets, eyewash locations, and mop sinks. Where outlet is indicated behind vending machines or other equipment, provide remote GFCI blank face in same room as protected receptacle and at a readily accessible location with standard receptacle outlet behind equipment.

- N. Install wall box dimmers to achieve full rating specified and indicated after de-rating for ganging as instructed by manufacturer.
- O. Do not share neutral conductor on dimming circuits.
- P. Install receptacles with grounding pole down, or as directed by Owner. If installed horizontally, install with neutral on top.
- Q. Connect wiring device grounding terminal to branch circuit equipment grounding conductor.
- R. Provide pigtail to each receptacle and each switch. Neutral and phase conductors shall be installed using side or rear entry lugs only. Do not wrap conductors around screw terminals. Tighten all screws and lugs as recommended by manufacturer.
- S. Provide nameplate engraving for all line voltage switches and receptacle outlets indicating panelboard and circuit number.
- T. All receptacles and switches shall have a minimum of two wraps of Scotch 33 or equivalent tape around terminal screws.
- U. Provide disconnect toggle switch within sight of all trap primers, circulation pumps, 120 volt motors and motorized equipment.
- V. In public areas provide engraved blank face GFCI switch cover plate for GFCI devices with black lettering explaining function as follows. "EDF Recept" for drinking fountains, "Rm Recepts" for Pre-K and Day Care, "Frig Recept" for refrigerators. For other loads, Owner shall determine wording. If in question, public areas are as determined per Owner.
- W. Provide engraved switch cover plates with black lettering explaining function for switches that operate loads other than room lighting. Wording shall be per Owner.
- X. Mount cord reels to structure as recommended by manufacturer. Field verify exact location of cord reels with Owner/Architect. Mounting location shall avoid conflicts with piping, light fixtures and ductwork, etc. when cord reel is extended and retracted. Set ball stop as directed by Owner / Architect. Provide hand lamp only type cord reels in commercial / educational automotive garages with classified (hazardous) locations. Provide local toggle switch at standard switch height for hand lamp only cord reels.

3.2 TESTING

- A. Before energizing, check for continuity of circuits, short circuits, and grounding connections. After energizing, check wiring devices to demonstrate proper operation and receptacles for correct polarization. Test GFCI receptacle operation with simulated ground fault tester.
- B. Operate each wall switch with circuit energized and verify proper operation.
- C. Verify that each receptacle device is energized.

- D. Test each receptacle device for proper polarity.
- E. Test each GFCI receptacle device for proper operation.
- F. Notify Owner's Commissioning Authority (CxA) prior to performing any tests to the CxA may witness tests at his/her discretion. Refer to Section 26 01 00 Commissioning of Electrical Systems.

SECTION 26 43 00

SURGE PROTECTION DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION/SCOPE

- A. The Surge Protection Device (SPD) covered under this section includes all service entrance type surge protection devices suitable for use as Type 1 or Type 2 Devices per UL1449 4th Edition, applied to the line or load side of the utility feed inside the facility. The unit shall be connected in parallel with the facility's wiring system. The unit shall be manufactured in the USA by a qualified manufacturer of suppression filter system equipment, which has been engaged in the commercial design and manufacture of such products for a minimum of five years.
- B. Contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to finish and install surge protection devices.

1.2 QUALITY ASSURANCE

- A. Reference Standard: Comply with the latest edition of the applicable provisions and recommendations of the following, except as otherwise stated in this document:
 - 1. UL 1449 Fourth Edition
 - 2. ANSI/IEEE C62.41, Recommended Practice for Surge Voltages in Low-Voltage AC Power Circuits.
 - 3. ANSI/IEEE C62.45, Guide for Surge Testing for equipment connected to Low-Voltage AC Power Circuits.
 - 4. IEEE 1100 Emerald Book.
 - 5. National Fire Protection Association (NFPA 70 (NEC), 75, and 78).
 - 6. UL 1283 Electromagnetic Interference Filters

1.3 SUBMITTALS

- A. Submit shop drawings complete with all technical information unit dimensions, detailed installation instructions, maintenance manual, and wiring configuration.
- B. Copies of Manufacturer's catalog data, technical information and specifications on equipment.
- C. Copies of documentation stating that the Surge Protection Device is listed from a Nationally Recognized Testing Laboratory (NRTL) (UL, ETL, etc) and are tested and multi-listed to UL 1449 4th Edition and UL 1283.
- D. Copies of actual let through voltage data in the form of oscilloscope results for both ANSI/IEEE C62.41 Category C3 (combination wave) and B3 (Ring wave) tested in accordance with ANSI/IEEE C6245.
- E. Copies of test reports from a recognized independent testing laboratory, capable of producing 200kA surge current waveforms, verifying the suppressor components can survive published surge current rating on both a per mode and per phase basis using the ANSI/IEEE C62.41 impulse waveform C3 (8 x 20 microsecond, 20kV/10kA). Test data on an individual module is not acceptable.
- F. Copy of warranty statement clearly establishing the terms and conditions to the building/facility owner/operator.

G. Provide detailed marked-up copy of this specification with line-by-line compliance or exception statements to all provisions of this specification.

1.4 WARRANTY

A. The manufacturer shall provide a minimum 10-Year warranty for parts from date of substantial completion against failure. Contractor shall install in compliance with applicable national / local electrical codes and the manufacturer's Installation, Operation and Maintenance Instructions.

PART 2 - PRODUCTS

2.1 APPROVED MANUFACTURER

- A. Low exposure, minimum 50k Amps per mode, 100k Amps per phase, Type 1 and Type 2
 - 1. Branch panelboard extensions for recessed mounting: Current Technology PX3-50 series; ASCO LPGE-65 Series; PSP 4000-HXC 100 Series. Brushed stainless steel front in kitchen and food processing areas.
 - 2. Branch panelboard surface mounted: Current Technology CGC50 series; ASCO 330XX 05 (Indoor only) Series; PSP 4000-HXC100 Series.
- B. Medium exposure, minimum 120k Amps per mode, 240k Amps per phase, Type 1 and Type 2.
 - Current Technology CGP120 series; ASCO 570YX12 Series; PSP 4000-HXC300 Series.
- C. High exposure, minimum 200k Amps per mode, 400k Amps per phase, Type 1 and 2 SPD
 - Current Technology CGP200 series; ASCO Power 570YX20 Series; PSP 5000-HXC 400 Series.

2.2 MANUFACTURED UNITS / ELECTRICAL REQUIREMENTS

- A. Declared Maximum Continuous Operating Voltage (MCOV) shall be greater than 115 percent of the nominal system operating voltage and in compliance with test and evaluation procedures outlined in the nominal discharge surge current test of UL1449, section 37.7.3. MCOV values claimed based on the component's value or on the 30-minute 115% overvoltage test in UL1449 will not be accepted.
- B. Unit shall have not more than 10% deterioration or degradation of the UL1449, Voltage Protection Rating (VPR) due to repeated surges.
- C. Protection Modes SVR (6kV, 500A) and UL1449 VPR(6kV, 3kA) for grounded WYE/delta and High Leg Delta circuits with voltages of (480Y/277), (208Y/120), (600Y/347). 3-Phase, 4 wire circuits, (120/240) split phase shall be as follows and comply with test procedures outlined in UL1449 section 37.6: Values Depicted are based on a system Without Disconnect / With Disconnect

System Voltage	Mode	MCOV	C3 Wave	UL 1449 VPR Rating
120/240	L-N	150	650/775	700/800
120/208	L-G	150	650/825	700/900
	N-G	0	500/500	900/1000
	L-L	300	950/1250	900/1200
277/480	L-N	320	1125/1225	900/1200
	L-G	320	1075/1225	1200/1200
	N-G	0	900/900	1200/1500
	L-L	550	1950/2200	1800/1800

- D. Electrical Noise Filter- each unit shall include a high performance EMI/RFI noise rejection filter. Noise attenuation for electric noise shall be as follows using the MIL-STD-220A insertion loss test method.
 - 1. 33 db from 10kHz to 100MHz
 - 2. All other frequencies should be 31 db or better.
- E. Each Unit shall provide the following features:
 - 1. Phase Indicator lights, Form C dry contacts, counter and audible alarm.
 - 2. Field testable while installed.
 - 3. High performance interconnecting cable.
 - The UL 1449 Voltage Protection Rating (VPR) shall be permanently affixed to the SPD unit.
 - 5. The UL 1449 Nominal Discharge Surge Current Rating shall be 20Ka
 - 6. The SCCR rating of the SPD shall be 200kAIC without requiring an upstream protection device for safe operation.
 - 7. The unit shall be listed as a Type 1 SPD, suitable for use in both Type 1 and Type 2 locations per UL1449.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. The unit shall be installed as close as practical to the facility's wiring system in accordance with applicable national/local electrical codes and the manufacturer's recommended installation instructions. Connection shall not be any longer than necessary, avoiding unnecessary bends. Minimum wire size and overcurrent protection shall be provided and as indicated or recommended by the manufacturer.
- B. Units specified for lighting and appliance panel boards as panelboard extensions (EGPE) shall be mounted directly above or below the first section of the panel board it is protecting. Any other mounting location will not be acceptable and shall be corrected, without exception, at no additional cost to the Owner.
- C. Units specified for panelboards, switchboards, or motor control centers shall be mounted directly above or adjacent to the panelboard, switchboard or motor control center using unistrut supports secured to structure as required. Conduit length between power distribution panelboard or switchboard shall be less than two-inches. Mounting above equipment is not acceptable.
- D. Overcurrent device and conductors for devices shall be the maximum recommended by the manufacturer. Manufacturer's recommendations shall prevail over the information given in the plans and specifications.
- E. Provide recessed mounted panelboard extension type enclosures for devices protecting recessed panelboards. Enclosure front shall match panelboard front. Provide brushed stainless steel front at kitchens and food processing areas.

3.2 TESTING

- A. Factory Trained Representative shall provide start-up to include initial verification of proper installation and initiate factory warranty. The technician will be required to do the following as a minimum:
 - 1. Verify overcurrent device rating
 - 2. Verify all wiring connections and installation conforms to manufacturer's recommendations.
 - 3. Record information for each product installed and include in O&M Manual

B. A copy of the Factory diagnostic test report and written approval of the installation shall be included with the Electrical Operating and Maintenance Manual. The Contractor shall make all adjustments, changes, corrections, etc. as required by the Factory Trained Representative so that the installation is in compliance with the manufacturer's installation and operation instructions without additional charge to the Owner.

SECTION 22 01 00

PLUMBING OPERATING AND MAINTENANCE MANUALS

1.1 SECTION INCLUDES

- A. Compilation product data and related information appropriate for Owner's operation and maintenance of products furnished under Contract. Prepare operating and maintenance data as specified.
- B. Instruct Owner's personnel in operation and maintenance of equipment and systems.
- C. Submit three copies of complete manual in final form.

1.2 SUBMITTALS

- A. Thirty (30) days after the Contractor has received the final scheduled identified submittals bearing the Architect/Engineer's stamp of acceptance (including resubmittals), submit for review one copy of the first draft of the Operating and Maintenance Manual. This copy shall contain as a minimum:
 - 1. Table of Contents for each element.
 - 2. Contractor information.
 - 3. All submittals, coordination drawings and product data, reviewed by the Architect/Engineer; bearing the Architect/Engineer's stamp of acceptance. (When submittals are returned from Engineer "Correct as Noted", corrected inserts shall be included.)
 - 4. All parts and maintenance manuals for items of equipment.
 - 5. Warranties (without starting dates)
 - 6. Certifications that have been completed. Submit forms and outlines of certifications that have not been completed.
 - 7. Operating and maintenance procedures.
 - 8. Form of Owner's Training Program Syllabus (including times and dates).
 - 9. Control operations/equipment wiring diagrams.
 - 10. Other required operating and maintenance information that are complete.
- B. Copy will be returned to the Contractor with comments for corrections.
- C. Submit three (3) completed manuals in final form to the Architect/Engineer one day after substantial completion, and prior to Owner's instructions. Include all specified data, test and balance reports, drawings, dated warranties, certificates, reports, along with other materials and information.
- D. The Architect/Engineer will review the manuals for completeness.
- E. The Contractor shall be notified of any missing or omitted materials. The Manuals shall be reworked by the Contractor, as required, in the office of the Architect / Engineer. The manuals will not be retransmitted.
- F. Two (2) complete Manuals will be delivered to the Owner.

PART 2 - PRODUCTS

2.1 BINDERS

A. Commercial quality black three-ring binders with clear overlay plastic covers.

DOUGLAS Lice

- B. Minimum ring size: 1". Maximum ring size: 3".
- C. When multiple binders are used, correlate the data into related groupings.
- D. Label contents on spine and face of binder with full size insert. Label under plastic cover.

PART 3 - EXECUTION

3.1 OPERATION AND MAINTENANCE MANUAL

- A. Form for Manuals:
 - 1. Prepare data in form of an instructional manual for use by Owner's personnel.
 - Format:
 - a. Size: 8-1/2" x 11".
 - b. Text: Manufacturer's printed data or neatly typewritten.
 - Drawings:
 - a. Provide reinforced punched binder tab and bind in text.
 - b. Fold larger drawings to size of text pages.
 - 4. Provide flyleaf indexed tabs for each separate product or each piece of operating equipment.
 - 5. Cover: Identify each volume with typed or printed title "Operating and Maintenance Instructions". List:
 - a. Title of Project
 - b. Identity of separate structures as applicable.
 - c. Identity of general subject matter covered in the manual.
 - 6. Binder as specified.

B. Content of Manual:

- 1. Neatly typewritten Table of Contents for each volume arranged in systematic order as outlined in the specifications.
 - a. Contractor, name of responsible principal, address and telephone number.
 - b. A list of each product required to be included, indexed to content of the volume.
 - c. List with each product, name, address and telephone number of:
 - 1) Subcontractor or installer.
 - 2) Maintenance contractor as appropriate.
 - 3) Identify area of responsibility of each.
 - 4) Local source of supply for parts and replacement.
 - d. Identify each product by product name and other identifying symbols as set forth in Contract Documents.
- 2. Product Data:
 - a. Include those sheets pertinent to the specific product.
 - b. Annotate each sheet to:
 - 1) Identify specific product or part installed.
 - 2) Identify data applicable to installation.
 - 3) Delete references to inapplicable information. (All options not supplied with equipment shall be marked out indicated in some manner.
- 3. Drawings:
 - a. Supplement product data with drawings as necessary to illustrate:
 - 1) Relations of component parts of equipment and systems.
 - 2) Control and flow diagrams.
 - b. Coordinate drawings with information in Project Record Documents to assure correct illustration of completed installation.
 - c. Do not use Project Record Documents as maintenance drawings.

- 4. Written text, as required to supplement product data for the particular installation:
 - a. Organize in consistent format under separate headings for different procedures.
 - b. Provide logical sequence of instructions for each procedure.
- 5. Copy of each warranty, bond and service contract issued.
 - a. Provide information sheet for Owner's personnel, giving:
 - 1) Proper procedures in event of failure.
 - 2) Instances that might affect validity of warranties or bonds.
- 6. Shop drawings, coordination drawings and product data as specified.
- C. Sections for Equipment and Systems.
 - 1. Content for each unit of equipment and system as appropriate:
 - a. Description of unit and component parts.
 - 1) Function, normal operating characteristics, and limiting conditions.
 - 2) Performance curves, engineering data and tests.
 - 3) Complete nomenclature and commercial number of replaceable parts.
 - b. Operating procedures:
 - 1) Start up, break-in, routine and normal operating instructions.
 - 2) Regulation, control, stopping, shut down and emergency instructions.
 - 3) Summer and winter operating instructions.
 - 4) Special operating instructions.
 - c. Maintenance procedures:
 - 1) Routine operations
 - 2) Guide to trouble-shooting.
 - 3) Disassembly, repair and reassembly.
 - 4) Alignment, adjusting and checking.
 - 5) Routine service based on operating hours.
 - d. Servicing and lubrication schedule. List of lubricants required.
 - e. Manufacturer's printed operating and maintenance instructions.
 - f. Description of sequence of operation by control manufacturer.
 - g. Original manufacturer's parts list, illustrations, assembly drawings and diagrams required for maintenance.
 - 1) Predicted life of part subject to wear.
 - 2) Items recommended to be stocked as spare parts.
 - h. As installed control diagrams by controls manufacturer.
 - i. Complete equipment internal wiring diagrams.
 - j. Each Contractor's coordination drawings.
 - k. As installed color coded piping diagrams.
 - I. Charts of valve tag number, with location and function of each valve.
 - m. List of original manufacturer's spare parts and recommended quantities to be maintained in storage.
 - n. Other data as required under pertinent sections of the specifications.
 - 1. Prepare and include additional data when the need for such data becomes apparent during instruction of Owner's personnel.
 - 2. Additional requirements for operating and maintenance data as outlined in respective sections of specifications.
 - 3. Provide complete information for products specified in Division 22.
 - 4. Provide certificates of compliance as specified in each related section.
 - 5. Provide start up reports as specified in each related section.
 - 6. Provide signed receipts for spare parts and material.
 - 7. Provide training report and certificates.
 - 8. Provide backflow preventer certified test reports.
 - 9. Provide gas piping pressure test reports.

SECTION 22 05 00

PLUMBING GENERAL PROVISIONS

1.1 RELATED DOCUMENTS

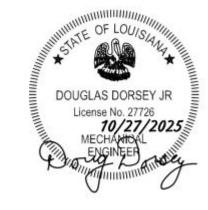
- A. Except as modified in this Section, General Conditions, Supplementary Conditions, applicable provisions of the General Requirements, and other provisions and requirements of the contract documents apply to work of Division 22 Plumbing.
- B. Applicable provisions of this section apply to all sections of Division 22, Plumbing.

1.2 CODE REQUIREMENTS AND FEES

- A. Perform work in accordance with applicable statutes, ordinances, codes and regulations of governmental authorities having jurisdiction.
- B. Plumbing work shall comply with applicable inspection services:
 - 1. Underwriters Laboratories
 - 2. National Fire Protection Association
 - 3. State Health Department
 - 4. Local Municipal Building Inspection Department
- C. Resolve any code violations discovered in contract documents with the Engineer prior to award of the contract. After Contract award, any correction or additions necessary for compliance with applicable codes shall be made at no additional cost to the Owner.
- D. This Contractor shall be responsible for being aware of and complying with asbestos NESHAP regulations, as well as all other applicable codes, laws and regulations.
- E. Obtain all permits required.

1.3 CONTRACTOR'S QUALIFICATIONS

- A. An approved contractor for the work under this division shall be:
 - 1. A licensed specialist in this field and have the personnel, experience, training, skill, and organization to provide a practical working system
 - 2. Able to furnish evidence of having contracted for and installed not less than 3 systems of comparable size and type that has served their Owners satisfactorily for not less than 3 years


1.4 REFERENCE SPECIFICATIONS AND STANDARDS

A. Materials which are specified by reference to Federal Specifications; ASTM, ASME, ANSI, or AWWA Specifications; Federal Standards; or other standard specifications must comply with latest editions, revisions, amendments or supplements in effect on date bids are received. Requirements in reference specifications and standards are minimum for all equipment, material, and work. In instances where specified capacities, size, or other features of equipment, devices, or materials exceed these minimums, meet specified capacities.

1.5 CONTRACT DRAWINGS

A. Contract drawings are diagrammatic only and do not give fully dimensioned locations of various elements of work. Determine exact locations from field measurements.

1.6 PROJECT RECORD DOCUMENTS

- A. Maintain at the job site a separate set of white prints (blue line or black line) of the contract drawings for the sole purpose of recording the "as-built" changes and diagrams of those portions of work in which actual construction is at variance with the contract drawings. Mark the drawings with a colored pencil. Prepare, as the work progresses and upon completion of work, reproducible drawings clearly indicating locations of various lines, valves, ductwork, traps, equipment, and other pertinent items, as installed. Include flow-line elevation of sewer lines. Record existing and new underground and under slab piping with dimensioned locations and elevations of such piping.
- B. At the conclusion of project, obtain without cost to the Owner, erasable mylars of the original drawings and transfer as-built changes to these. Prior to transmittal of corrected drawings, obtain 3 sets of blue-line prints of each drawing, regardless of whether corrections were necessary and include in the transmittal (2 sets are for the Owner's use and one set is for the Architect/Engineer's records). Delivery of these as-built prints and reproducibles is a condition of final acceptance. Provide record drawings on one set each (reproducible Dayrex mylar film positives) and AutoCad 2012 / Revit CAD files on disk (CD Rom).
- C. As-Built drawings should indicate the following information as a minimum:
 - 1. Indicate all addendum changes to documents.
 - 2. Remove Engineer's seal, name, address and logo from drawings.
 - 3. Mark documents RECORD DRAWINGS.
 - 4. Clearly indicate: DOCUMENT PRODUCED BY
 - 5. Indicate all changes to construction during construction. Indicate actual routing of all piping, ductwork, etc. that were deviated from construction drawings.
 - 6. Indicate exact location of all underground plumbing and flow line elevation.
 - 7. Indicate exact location of all underground plumbing piping and elevation.
 - 8. Indicate exact location of all underground electrical raceways and elevations.
 - 9. Correct schedules to reflect (actual) equipment furnished and manufacturer.
 - During the execution of work, maintain a complete set of drawings and specifications upon which all locations of equipment, ductwork, piping, devices, and all deviations and changes from the construction documents in the work shall be recorded.
 - 11. Location and size of all ductwork and mechanical piping above ceiling including exact location of isolation of domestic and plumbing valves.
 - 12. Exact location of all electrical equipment in and outside of the building.
 - 13. Fire Protection System documents revised to indicate exact location of all sprinkler heads and zone valves.
 - 14. Exact location of all roof mounted equipment, wall, roof and floor penetrations.
 - 15. Cloud all changes.

1.7 SPACE REQUIREMENTS

A. Consider space limitations imposed by contiguous work in selection and location of equipment and material. Do not provide equipment or material that is not suitable in this respect.

1.8 RELATION WITH OTHER TRADES

- A. Carefully study all matters and conditions concerning the project. Submit notification of conflict in ample time to prevent unwarranted changes in any work. Review other Divisions of these specifications to determine their requirements.
- B. Because of the complicated relationship of this work to the total project, conscientiously study the relation and cooperate as necessary to accomplish the full intent of the documents.

- C. Provide sleeves and inserts in forms as required for the work. Stub up and protect open ends of pipe before any concrete is placed. Furnish sizes of required equipment pads. Furnish and locate bolts and fittings required to be cast in them.
- D. Locate and size openings required for installation of work specified in this Division in sufficient time to prevent delay in the work.
- E. Refer to other Divisions of the specifications for the scope of required connections to equipment furnished under that Division. Determine from the Contractor for the various trades, the Owner, and by direction from the Architect/Engineer, the exact location of all items.

1.9 CONCEALED AND EXPOSED WORK

A. When the word "concealed" is used in connection with insulating, painting, piping, ducts and the like, the work is understood to mean hidden from sight as in chases, furred spaces or above ceilings. "Exposed" is understood to mean open to view.

1.10 GUARANTEE

A. Guarantee work for a minimum of 1 year from the date of substantial completion of the project. During that period make good any faults or imperfections that may arise due to defects or omissions in material, equipment or workmanship. At the Owner's option, replacement of failed parts or equipment shall be provided.

1.11 MATERIAL AND EQUIPMENT

A. Furnish new and unused materials and equipment meeting the requirements of the paragraph specifying acceptable manufacturers. Where two or more units of the same type or class of equipment are required, provide units of a single manufacturer.

1.12 NOISE AND VIBRATION

A. Select equipment to operate with minimum noise and vibration. If objectionable noise or vibration is produced or transmitted to or through the building structure by equipment, piping, ducts or other parts of work, rectify such conditions at no additional cost. If the item of equipment is judged to produce objectionable noise or vibration, demonstrate at no additional cost that equipment performs within designated limits on a vibration chart.

1.13 ACCEPTABLE MANUFACTURERS

A. Manufacturers names and catalog number specified under sections of Division 22 are used to establish standards of design, performance, quality and serviceability and not to limit competition. Equipment of similar design, equal to that specified, manufactured by a named manufacturer will be acceptable on approval. A request for prior approval of equipment not listed must be submitted ten (10) days before bid due date. Submit complete design and performance data to the Engineer.

1.14 OPERATING TESTS

A. After all plumbing systems have been completed and put into operation, subject each system to an operating test under design conditions to ensure proper sequencing and operation throughout the range of operation. Tests shall be made in the presence of the Architect/Engineer. Make adjustments as required to ensure proper functioning of all systems. Special tests on individual systems are specified under individual sections. Submit 3 copies of all certifications and test reports adequately in advance of completion of the work to allow for remedial action as required to correct deficiencies discovered in equipment and

systems.

1.15 WARRANTIES

A. Submit 3 copies of all warranties and guarantees for systems, equipment, devices and materials. These shall be included in the Operating and Maintenance Manuals.

1.16 BUILDING CONSTRUCTION

A. It shall be the responsibility of each sub-contractor to consult the Architectural and Engineering drawings, details, and specifications and thoroughly familiarize himself with the project and all job related requirements. Each sub-contractor shall cooperate with the General Contractor to verify that all piping and other items are placed in the walls, furred spaces, chases, etc., so there will be no delays in the job.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 OPENINGS

A. Framed, cast or masonry openings for ductwork, equipment or piping are specified under other divisions. Drawings and layout work for exact size and location of all openings are included under this division.

3.2 HOUSEKEEPING PADS

- A. Provide equipment housekeeping pads under all floor mounted and ground mounted plumbing equipment, and as shown on the drawings.
- B. Concrete work as specified in Division 3.
- C. Concrete pads:
 - 1. 4" high, rounded edges, minimum 2500 psi unless otherwise indicated on the drawings
 - 2. Chamfer strips at edges and corner of forms.
 - 3. Smooth steel trowel finish.
 - 4. Doweled to existing slab
- D. Install concrete curbs around multiple pipe penetrations.

3.3 VANDAL RESISTANT DEVICES

- A. Provide a handle for each loose keyed operated valve and hose bibb on the project.
- B. Where vandal resistant screws or bolts are employed on the project, deliver to the Owner 2 suitable tools for use with each type of fastener used.
- C. Proof of delivery of these items to the Owner shall be included in the Operating and Maintenance Manuals.

3.4 INSTRUCTION OF OWNER'S PERSONNEL

A. Prior to final inspection, conduct an on-site training program to instruct the Owner's operating personnel in the operation and maintenance of the plumbing systems.

- 1. Provide the training during the Owner's regular working day.
- 2. The Instructors shall each be experienced in their phase of operation and maintenance of building plumbing systems and with the project.
- B. Time to be allocated for instructions.
 - 1. Minimum of 8 non-consecutive hours dedicated instructor time.
 - 2. 4 hours on each of 2 days.
- C. Before proceeding with the on-site training program, submit the program syllabus; proposed time and dates; and other pertinent information for review and approval.
 - 1. One copy to the Owner.
 - 2. One copy to the Architect/Engineer.
- D. The Owner will provide a list of personnel to receive instructions, and will coordinate their attendance at the agreed upon times.
- E. Use the operation and maintenance manuals as the basis of instruction. Review contents of manual with personnel in detail to explain all aspects of operation and maintenance.
- F. Demonstrate start-up, operation, control, adjustment, trouble-shooting, servicing, maintenance, and shut down of each item of equipment.
- G. Demonstrate equipment functions (both individually and as part of the total integrated system).
- H. Prepare and insert additional data in the operating and maintenance manuals when the need for additional data becomes apparent during instructions.
- I. Submit a report within one week after completion of the training program that instructions have been satisfactorily completed. Give time and date of each demonstration and hours devoted to the demonstration, with a list of people present.
- J. At the conclusion of the on-site training program, have the person designated by the Owner sign a certificate to certify that he/she has a proper understanding of the system, that the demonstrations and instructions have been satisfactorily completed, and the scope and content of the operating and maintenance manuals used for the training program are satisfactory.
- K. Provide a copy of the report and the certificate in an appropriately tabbed section of each Operating and Maintenance Manual.

3.5 EQUIPMENT IDENTIFICATION and PIPE IDENTIFICATION/DIRECTIONAL ARROWS

- A. Provide a laminated engraved plastic nameplate on each piece of equipment and starter.
 - 1. Designation approved by Architect/Engineer.
 - 2. Equipment includes, but is not limited to, water heaters, pumps, boilers and utility controllers.
 - 3. Submit schedule of equipment to be included and designations.
- B. Provide nameplates with 1/2" high letters and fastened with epoxy or screws.
- C. Provide and install industry standard color-coordinated pipe system identification and fluid directional flow arrows at each change in piping direction and/or at a minimum of every 10 feet of straight run of piping.

3.6 OBSTRUCTIONS

- A. The drawings indicate certain information pertaining to surface and subsurface obstructions which has been taken from available drawings. Such information is not guaranteed, however, as to accuracy of location or complete information.
 - 1. Before any cutting or trenching operations are begun, verify with Owner's representative, utility companies, municipalities, and other interested parties that all available information has been provided.
 - 2. Should obstruction be encountered, whether shown or not, alter routing of new work, reroute existing lines, remove obstruction where permitted, or otherwise perform whatever work is necessary to satisfy the purpose of the new work and leave existing services and structures in a satisfactory and serviceable condition.
- B. Assume total responsibility for and repair any damage to existing utilities or construction, whether or not such existing facilities are shown.

3.7 PROTECTION

A. Protect work, equipment, fixtures, and materials. At work completion, work must be clean and in original manufacturer's condition.

SECTION 22 05 10

PLUMBING CONTRACT QUALITY CONTROL

1.1 WORK INCLUDED

A. Contract quality control including workmanship, manufacturer's instructions and demonstrations.

1.2 QUALITY CONTROL PROGRAM

A. Maintain quality control over supervision, subcontractors, suppliers, manufacturers, products, services, site conditions and workmanship to produce work in accordance with contract documents.

1.3 WORKMANSHIP

- A. Comply with industry standards except when more restrictive tolerances or specified requirements indicate more rigid standards or more precise workmanship.
- B. Perform work by persons qualified to produce workmanship of specified quality.
- C. Secure products in place with positive anchorage devices designed and sized to withstand stresses, vibration, and racking. Under no conditions shall material or equipment be suspended from structural bridging.
- D. Provide finishes to match approved samples. All exposed finishes shall be approved by the Architect. Submit color samples as required.

1.4 MANUFACTURER'S INSTRUCTIONS

- A. Comply with instructions in full detail, including each step in sequence.
- B. Should instruction conflict with Contract Documents, request clarification from Architect / Engineer before proceeding.

1.5 MANUFACTURER'S CERTIFICATES

A. When required in individual Specification Sections, submit manufacturer's certificate in duplicate, certifying that products meet or exceed specified requirements.

1.6 MANUFACTURER'S FIELD SERVICES

- A. When required in individual Specification Sections, manufacturer shall provide qualified personnel to observe:
 - 1. Field conditions.
 - 2. Condition of installation.
 - Quality of workmanship.
 - 4. Start-up of equipment.
 - 5. Testing, adjusting, and balancing of equipment.
- B. Representative shall make written report of observations and recommendations to Architect / Engineer.

DOUGLAS 'Lice

PART 2 - PRODUCTS

2.1 REFERENCE APPLICABLE SPECIFICATION SECTIONS.

PART 3 - EXECUTION

3.1 PROTECTION OF EQUIPMENT

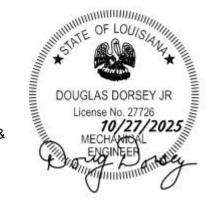
- A. Do not deliver equipment to the project site until progress of construction has reached the stage where equipment is actually needed or until building is closed in enough to protect the equipment from weather. Equipment allowed to stand in the weather will be rejected, and the Contractor is obligated to furnish new equipment of a like kind at no additional cost to the Owner.
- B. Adequately protect equipment from damage after delivery to the project. Cover with heavy tarpaulins, drop cloths or other protective coverings as required to protect from plaster, paint, mortar and/or dirt. Do not cover with plastic materials and trap condensate and cause corrosion.

SECTION 22 05 12

PLUMBING SHOP DRAWINGS, COORDINATION DRAWINGS & PRODUCT DATA

PART 1 - GENERAL

1.1 WORK INCLUDED


- A. Prepare submittals as required by Division 1.
- B. The term submittal, as used herein, refers to all:
 - 1. Shop Drawings
 - 2. Coordination Drawings
 - 3. Product data
- C. Submittals shall be prepared and produced for:
 - 1. Distribution as specified
 - 2. Inclusion in the Operating and Maintenance Manual, as specified, in the related section

1.2 SHOP DRAWINGS

- A. Present drawings in a clear and thorough manner. Identify details by reference to sheet and detail, schedule, or room numbers shown on Contract Drawings.
- B. Show all dimensions of each item of equipment on a single composite Shop Drawing. Do not submit a series of drawings of components.
- C. Identify field dimensions; show relationship to adjacent features, critical features, work, or products.
- D. Submit shop drawings in plan, elevation and sections, showing equipment in mechanical equipment areas.

1.3 COORDINATION DRAWINGS

- A. Present in a clear and thorough manner. Title each drawing with project name. Identify each element of drawings by reference to sheet number and detail, or room number of contract documents. Minimum drawing scale: 1/4" = 1'-0".
- B. Prepare coordination drawings to coordinate installations for efficient use of available space, for proper sequence of installation, and to resolve conflicts. Coordinate with work specified in other sections and other divisions of the specifications.
- C. For each mechanical room and for each outside equipment pad where equipment is located, submit plan and elevation drawings. Show:
 - 1. Actual mechanical equipment and components to be furnished
 - 2. Service clearance
 - 3. Relationship to other equipment and components
 - 4. Roof drains and leader piping
 - 5. Fire protection piping and equipment
- D. Identify field dimensions. Show relation to adjacent or critical features of work or products.
- E. Related requirements:
 - 1. Ductwork shop drawings
 - 2. Coordination drawing specified in Division 26

- F. Submit shop drawings in plan, elevation and sections, showing equipment in mechanical equipment areas.
- G. Gas piping sketch indicating proposed location of piping prior to proceeding with the installation.

1.4 PRODUCT DATA AND INSTALLATION INSTRUCTION

- A. Submit only pages which are pertinent to the project. All options which are indicated on the product data shall become part of the contract and shall be required whether specified are not.
- B. Mark each copy of standard printed data to identify pertinent products, referenced to specification section and article number.
- C. Show reference standards, performance characteristics and capacities; wiring and piping diagrams and controls; component parts; finishes; dimensions and required clearances.
- D. Modify manufacturer's standard schematic drawings and diagrams to supplement standard information and to provide information specifically applicable to the work. Delete information not applicable.
- E. Mark up a copy of the specifications for the product. Indicate in the margin of each paragraph the following: "Comply, "Do Not Comply", or "Not Applicable". Explain all "Do Not Comply" statements.
- F. Provide a separate transmittal for each submittal item. Transmittals shall indicate product by specification section name and number. Separate all submittals into appropriate specification section number. Do not combine specification sections.

1.5 MANUFACTURERS INSTRUCTIONS

A. Submit Manufacturer's instructions for storage, preparation, assembly, installation, start-up, adjusting, calibrating, balancing and finishing.

1.6 CONTRACTOR RESPONSIBILITIES

- A. Review submittals prior to transmittal.
- B. Determine and verify:
 - 1. Field measurements
 - 2. Field construction criteria
 - 3. Manufacturer's catalog numbers
 - 4. Conformance with requirements of Contract Documents
- C. Coordinate submittals with requirements of the work and of the Contract Documents.
- D. Notify the Architect/Engineer in writing at time of submission of any deviations in the submittals from requirements of the Contract Documents.
- E. Do not fabricate products, or begin work for which submittals are specified, until such submittals have been produced and bear contractor's stamp. Do not fabricate products or begin work scheduled to have submittals reviewed until return of reviewed submittals with Architect/Engineer's acceptance.
- F. Contractor's responsibility for errors and omissions in submittals is not relieved whether Architect/Engineer reviews submittals or not.

- G. Contractor's responsibility for deviations in submittals from requirements of Contract Documents is not relieved whether Architect/Engineer reviews submittals or not, unless Architect/engineer gives written acceptance of the specific deviations on reviewed documents.
- H. Submittals shall show sufficient data to indicate complete compliance with Contract Documents:
 - 1. Proper sizes and capacities
 - 2. That the item will fit in the available space in a manner that will allow proper service
 - 3. Construction methods, materials and finishes
- I. Schedule submissions at least 15 days before date reviewed submittals will be needed.

1.7 SUBMISSION REQUIREMENTS

- A. Make submittals promptly in accordance with approved schedule, and in such sequence as to cause no delay in the Project or in the work of any other Contractor.
- B. Number of submittals required:
 - 1. Shop Drawings and Coordination Drawings: Submit one reproducible transparency and three opaque reproductions.
 - 2. Product Data: Submit the number of copies which the contractor requires, plus those which will be retained by the Architect/Engineer.
- C. Accompany submittals with transmittal letter, in duplicate, containing:
 - 1. Date
 - 2. Project title and number
 - 3. Contractor's name and address
 - 4. The number of each Shop Drawing, Project Datum and Sample submitted
 - 5. Other pertinent data
- D. Submittals shall include:
 - 1. The date of submission
 - 2. The project title and number
 - Contract Identification
 - 4. The names of:
 - a. Contractor
 - b. Subcontractor
 - c. Supplier
 - d. Manufacturer
 - 5. Identification of the product
 - 6. Field dimensions, clearly identified as such
 - 7. Relation to adjacent or critical features of the work or materials
 - 8. Applicable standards, such as ASTM or federal specifications numbers
 - 9. Identification of deviations from contract documents
 - 10. Suitable blank space for General Contractor and Architect/Engineer stamps
 - 11. Contractor's signed and dated Stamp of Approval
- E. Coordinate submittals into logical groupings to facilitate interrelation of the several items:
 - 1. Finishes which involve Architect/Engineer selection of colors, textures or patterns
 - 2. Associated items which require correlation for efficient function or for installation

1.8 SUBMITTAL SPECIFICATION INFORMATION

- A. Every submittal document shall bear the following information as used in the project manual:
 - 1. The related specification section number

- 2. The exact specification section title
- B. Submittals delivered to the Architect/Engineer without the specified information will not be processed. The Contractor shall bear the risk of all delays, as if no submittal had been delivered.

1.9 RESUBMISSION REQUIREMENTS

- A. Make re-submittals under procedures specified for initial submittals.
 - 1. Indicate that the document or sample is a re-submittal
 - 2. Identify changes made since previous submittals
- B. Indicate any changes which have been made, other than those requested by the Architect / Engineer.

1.10 CONTRACTOR'S STAMP OF APPROVAL

- A. Contractor shall stamp and sign each document certifying to the review of products, field measurements and field construction criteria, and coordination of the information within the submittal with requirements of the work and of Contract Documents.
- B. Contractor's stamp of approval on any submittal shall constitute a representation to Owner and Architect/Engineer that Contractor has either determined and verified all quantities, dimensions, field construction criteria, materials, catalog numbers, and similar data or assumes full responsibility for doing so, and that Contractor has reviewed or coordinated each submittal with the requirements of the work and the Contract Documents.
- C. Do not deliver any submittals to the Architect/Engineer that do not bear the Contractor's stamp of approval and signature.
- D. Submittals delivered to the Architect/Engineer without Contractor's stamp of approval and signature will not be processed. The Contractor shall bear the risk of all delays, as if no submittal had been delivered.

1.11 ARCHITECT/ENGINEER REVIEW OF IDENTIFIED SUBMITTALS

- A. The Architect/Engineer will:
 - Review identified submittals with reasonable promptness and in accordance with schedule
 - 2. Affix stamp and initials or signature, and indicate requirements for re-submittal or approval of submittal
 - 3. Return submittals to Contractor for distribution or for resubmission
- B. Review and approval of submittals will not extend to design data reflected in submittals which is peculiarly within the special expertise of the Contractor or any party dealing directly with the Contractor.
- C. Architect/Engineer's review and approval is only for conformance with the design concept of the project and for compliance with the information given in the contract.
 - 1. The review shall not extend to means, methods, sequences, techniques or procedures of construction or to safety precautions or programs incident thereto.
 - 2. The review shall not extend to review of quantities, dimensions, weights or gauges, fabrication processes or coordination with the work of other trades.
- D. The review and approval of a separate item as such will not indicate approval of the assembly in which the item functions.

1.12 SUBSTITUTIONS

- A. Do not make requests for substitution employing the procedures of this Section.
- B. The procedure for making a formal request for substitution is specified in Div. 1.

PART 2 - PRODUCTS - NOT USED.

PART 3 - EXECUTION - NOT USED

SECTION 22 05 13

ELECTRICAL PROVISIONS OF PLUMBING WORK

1.1 WORK INCLUDED

- A. Electrical provisions to be provided as plumbing work are indicated in other Division 22 sections, on drawings, and as specified.
- B. Types of work, normally recognized as electrical but provided as plumbing, specified or partially specified in this Section, include but are not necessarily limited to the following:
 - 1. Motors for plumbing equipment.
 - 2. Starters or Variable Frequency Drives (VFD's) for motors of plumbing equipment.
 - 3. Wiring from motors to disconnect switches or junction boxes for motors of plumbing equipment, but only where specifically indicated to be furnished integrally with equipment.
 - 4. Wiring of field-mounted float control switches, flow control switches, and similar plumbing-electrical devices provided for plumbing systems, to equipment control panels.
 - 5. Pipe heat tracing.
- C. Refer to Division 22 sections for specific individual plumbing equipment electrical requirements.
- D. Refer to Division 26 sections for junction boxes and disconnect switches required for motors and other electrical units of plumbing equipment.

1.2 RELATED WORK

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Specification Sections, apply to work of this Section.

1.3 QUALITY ASSURANCE

- A. Wherever possible, match elements of electrical provisions of plumbing work with similar elements of electrical work specified in Division 26 sections for electrical work not otherwise specified.
- B. For electrical equipment and products, comply with applicable NEMA standards, and refer to NEMA standards for definitions of terminology. Comply with National Electrical Code (NFPA 70) for workmanship and installation requirements.

1.4 SUBMITTALS

A. Include in listing of motors, voltage, notation of whether motor starter is furnished or installed integrally with motor or equipment containing motors.

PART 2 - PRODUCTS

2.1 MOTORS

- A. Provide motors for plumbing equipment manufactured by one of the following:
 - 1. Baldor Electric Company.
 - 2. Century Electric Div., Inc.
 - 3. General Electric Co.

DOUGLAS P

- 4. Louis Allis Div.; Litton Industrial Products, Inc.
- 5. Lincoln Electric
- 6. Marathon Electric Mfg. Corp.
- 7. Reliance Electric Co.
- 8. Westinghouse Electric Corp.
- B. Motor Characteristics. Except where more stringent requirements are indicated, and except where required items of plumbing equipment cannot be obtained with fully complying motors, comply with the following requirements for motors of plumbing work:
- C. Temperature Rating. Rated for 40°C environment with maximum 50°C temperature rise for continuous duty at full load (Class A Insulation).
- D. Provide each motor capable of making starts as frequently as indicated by automatic control system, and not less than 5 starts per hour for manually controlled motors.
- E. Phases and Current Characteristics. Provide squirrel-cage induction polyphase motors for 3/4hp and larger, and provide capacitor-start single-phase motors for 1/2hp and smaller, except 1/6hp and smaller may, at equipment manufacturer's option, be split-phase type. Coordinate current characteristics with power specified in Division 26 sections, and with individual equipment requirements specified in other Division 22 requirements. For 2-speed motors provide 2 separate windings on polyphase motors. Do not purchase motors until power characteristics available at locations of motors have been confirmed, and until rotation directions have been confirmed.
- F. Service Factor. 1.15 for polyphase motors and 1.35 for single-phase motors.
- G. Motor Construction. Provide general purpose, continuous duty motors, Design "B" except "C" where required for high starting torque.
 - 1. Frames. NEMA #56.
 - 2. Bearings are to be ball or roller bearings with inner and outer shaft seals, regreasable except permanently sealed where motor is inaccessible for regular maintenance. Where belt drives and other drives produce lateral or axial thrust in motor, provide bearings designed to resist thrust loading. Refer to individual section of Division 22 for fractional-hp light-duty motors where sleeve-type bearings are permitted.
 - 3. Except as indicated, provide open drip-proof motors for indoor use where satisfactorily housed or remotely located during operation, and provide guarded drip-proof motors where exposed to contact by employees or building occupants. Provide weather-protected Type I for outdoor use, Type II where not housed. Refer to individual sections of Division 22 for other enclosure requirements.
 - 4. Provide built-in thermal overload protection and, where indicated, provide internal sensing device suitable for signaling and stopping motor at starter.
 - 5. Noise Rating: Provide "Quiet" rating on motors.
- H. All motors shall be premium efficiency.
- I. Motors operated utilizing variable frequency drives shall include grounding rings and shall be inverter duty rated.

2.2 EQUIPMENT FABRICATION

A. Fabricate plumbing equipment for secure mounting of motors and other electrical items included in work. Provide either permanent alignment of motors with equipment, or adjustable mountings as applicable for belt drives, gear drives, special couplings and similar indirect coupling of equipment. Provide safe, secure, durable, and removable

guards for motor drives. Arrange for lubrication and similar running-maintenance without removal of guards.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motors on motor mounting systems in accordance with motor manufacturer's instructions, anchored to resist torque, drive thrusts, and other external forces inherent in plumbing work. Secure sheaves and other drive units to motor shafts with keys and Allen set screws on flat surface of shaft. Unless otherwise indicated, set motor shafts parallel with machine shafts.
- B. Verify voltage with Electrical Plans.

SECTION 22 05 14

PLUMBING ALTERATIONS PROJECT PROCEDURES

1.1 WORK INCLUDED

- A. Inspect and service existing equipment and materials that are to remain or to be reused.
- B. Disposal of equipment, materials, or housekeeping pads to be abandoned. Prior to disposal, the Contractor shall verify with the Owner what is to be salvaged by the Owner and what is to become the property of the Contractor.
- C. Handling of equipment and materials to be removed.

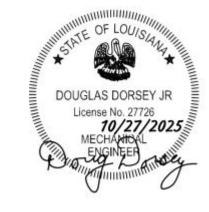
1.2 QUALITY ASSURANCE

A. Coordination with the Owner prior to the disconnection or shutdown of existing equipment, or to the modification of existing operational systems.

1.3 CONTRACT DRAWINGS

A. There is the possibility that existing conditions and devices are affected by the work indicated on the drawings and called for in the specifications (project manual) that do not appear on the drawings. It is the Contractor's responsibility to visit the site and determine all of the existing conditions and to consider these existing conditions when making and presenting a proposal, to have a complete proposal.

PART 2 - PRODUCTS


2.1 MATERIALS AND EQUIPMENT

- A. Material used to upgrade and repair existing equipment shall conform to that specified.
- B. Material used to upgrade and repair existing equipment shall not void existing warranties or listings of the equipment to be upgraded or repaired.
- C. Material used to upgrade and repair existing equipment shall be new and shall be of the same manufacturer of the existing equipment, shall be acquired through the existing original equipment manufacturer's approved distribution channels, shall have manufacturer's warranties for the new material being used, and shall be listed for the use intended.

PART 3 - EXECUTION

3.1 INSPECTION

- A. Existing materials and equipment indicated on the drawings or in the specifications to be reused shall be inspected for damaged or missing parts. Contractor shall notify the Architect/Engineer, in writing, accordingly.
- B. If using materials specified or shown on the drawing voids or diminishes the warranty or operation of remaining equipment or systems, the Contractor shall notify the Architect/Engineer, in writing.

- C. Verify field measurements, above and underground piping connections and flows.
- D. Demolition Drawings are based on casual field observation, and when available, existing record documents. Report discrepancies to Architect before disturbing existing installation, and immediately after such discrepancies are discovered.
- E. Field verify existing conditions and actual utility uses prior to final connections. Existing drawings may not have been available for all required information. Use pipe inspection camera system to field verify existing sanitary / grease waste connections. Verify flow direction and depth prior to connection to existing plumbing systems.

3.2 APPLICATION

- A. Existing materials and equipment indicated on the drawings or in the specifications to be reused shall be cleaned and reconditioned, including cleaning of piping systems prior to installation and reuse.
- B. Material and equipment removed that is not to be salvaged for Owner's use or for reuse on the project shall become the property of the Contractor and be removed from the site.
- C. Material or equipment salvaged for Owner's use shall be carefully handled and stored where directed by the Owner or the Architect / Engineer. Relocate material and / or equipment as directed by Owner.
- D. Materials and equipment not indicated to be removed or abandoned shall be reconnected to the new system.
- E. Materials, equipment and housekeeping pads not to be reused or reconnected shall be removed for Owner's review and salvaged by Contractor.
- F. Prior to start of construction, Contractor shall walk areas to be renovated with Owner to identify and document items to be salvaged for Owner's use.
- G. Clean and repair existing materials and equipment that remain or are to be reused.
- H. Contractor shall utilize spaces efficiently to maximize accessibility for other installations, for maintenance, and for repairs.

3.3 SEQUENCE AND SCHEDULE

- A. Coordinate utility service outages with Utility Company, Architect and Owner.
- B. Provide additional or temporary valves, piping and connections to maintain existing systems in service during construction.
- C. Existing Plumbing Service: Refer to drawings for work in remodeled areas. Where facilities in these areas are to remain in service, any related work to keep the facilities in operation is specified in this Division. Maintain existing system in service until new system is complete and ready for service. Disable system only to make switchovers and connections. Schedule and obtain approval/permission from Owner at least 48 hours before partially or completely disabling system. Minimize outage duration. Make temporary connections to maintain service in areas adjacent to work area. Maintain acceptable temperature and humidity control within existing building during renovation activities.
- D. Remove and replace existing Plumbing systems and appurtenances as occasioned by

- new or remodeled construction. Re-establish service that may be interrupted by remodeled construction.
- E. Refer to other drawings series for work in remodeled areas. Where facilities in these areas are required to remain in service, any related work required to keep these facilities in operation is specified in this Division.
- F. Remove and replace existing piping coincident with the construction.
- G. Remove or relocate existing piping or housekeeping pads as occasioned by new or remodeled construction. Cap unused domestic piping beyond the new finish line.
- H. Relocate all domestic piping as required to accommodate new work requiring precedence.
- I. Remove concrete housekeeping pad where materials or equipment have been removed.
- J. Remove all known utilities that do not provide service to the buildings that remain.
- K. Remove existing plumbing vent penetrations through roof not to be reused.

3.4 DEMOLITION AND EXTENSION OF EXISTING PLUMBING WORK

- A. The Contractor shall modify, remove, and/or relocate all materials and items so indicated on the drawings or required by the installation of new facilities. All removals and/or dismantling shall be conducted in a manner as to produce maximum salvage. Salvage materials shall remain the property of the Owner, and shall be delivered to such destination as directed by the Owner's representative unless they are not wanted, then it will be the responsibility of this Contractor to remove such items and properly dispose of them. Materials and/or items scheduled for relocation and which are damaged during dismantling or reassembly operations shall be repaired and restored to good operative condition. The Contractor may, at his discretion, and upon approval of the Owner's representative substitute new materials and/or items of like design and quality in lieu of materials and/or items to be relocated.
- B. All items to be relocated shall be carefully removed in reverse to original assembly or placement and protected until relocated. The Contractor shall clean, repair, and provide all new materials, fittings, and appurtenances required to complete the relocations and to restore them to good operative order. All relocations shall be performed by workmen skilled in the work and in accordance with standard practice of the trades involved.
- C. When items scheduled for relocation and/or reuse are found to be in damaged condition before work has been started on dismantling, the Contractor shall call the attention of the Owner's representative to such items and receive further instructions before removal. Items damaged in repositioning operations are the contractor's responsibility and shall be repaired or replaced by the contractor as approved by the owner's representative, at no additional cost to the Owner.
- D. Plumbing, piping and appurtenances to be removed, salvaged, or relocated shall be removed to points indicated on the drawings, specified, or acceptable to the Owner's representative. Piping not scheduled for reuse shall be removed to the points at which reuse is to be continued or service is to remain. Such services shall be sealed, capped, or otherwise tied-off or disconnected in a safe manner acceptable to the Construction Inspector. All disconnections or connections into the existing facilities shall be done in such a manner as to result in minimum interruption of services to adjacent occupied areas. Services to existing areas or facilities that must remain in operation during the

- construction period shall not be interrupted without prior specific approval of the Owner's representative hereinbefore specified.
- E. Repair adjacent construction and finishes damaged during demolition and extension work.
- F. Maintain access to mechanical installations that remain active. Modify installation or provide access panel as appropriate.
- G. Extend existing installations using materials and methods compatible with existing plumbing installations, or as specified.
- H. Existing plumbing piping and devices found to need additional hangers installed should be added at no additional cost to the Owner.

3.5 PROTECTION OF THE WORK

- A. Provide adequate temporary support and auxiliary structure as necessary to ensure structural value or integrity of affected portion of work.
- B. Provide devices and methods to protect other portions of work from damage.
- C. Execute fitting and adjustment of products to provide a finished installation to comply with specified products, functions, tolerances and finishes.

3.6 IDENTIFICATION OF EQUIPMENT IN RENOVATED AREAS

A. Identification of Equipment: Provide new identification of all existing equipment to be reused and located within the renovated areas. Do not include the description "existing". Provide new nameplates for all existing plumbing equipment in renovated areas as specified in Plumbing General Provisions.

SECTION 22 05 17

PLUMBING ACCESS DOORS

1.1 WORK INCLUDED

A. Furnish and install access doors in wall or ceiling locations as required or shown for access to valves, controls, regulating devices, water arresters and other equipment requiring maintenance, adjustment or operation.

PART 2 - PRODUCTS

2.1 NON-FIRE RATED ACCESS DOORS

- A. 16-Gauge frames
- B. 14-gauge steel panels
- C. Continuous fully concealed hinges
- D. Flush screwdriver cam lock & cylinder lock for Owner selection
- E. Prime coat finish
- F. Brushed satin stainless steel finish in areas with gypboard ceilings (i.e. specifically restrooms, kitchens or cafeteria installation)
- G. Material suitable for wall and/or ceiling mounting

2.2 FIRE RATED ACCESS DOORS

- A. UL listed, 1-1/2 hour Label "B", access doors
- B. 16-Gauge stainless steel
- C. 20-Gauge insulated sandwich-type door panel.
- D. Two inch thick with fire rated insulation
- E. Continuous fully concealed hinge
- F. Automatic closing and latching mechanism
- G. Knurled knob and recessed key operation for Owner selection
- H. Interior latch release slide for opening from inside
- I. Prime coat finish
- J. Material suitable for wall and/or ceiling mounting

2.3 ACCEPTABLE MANUFACTURERS

A. Milcor

DOUGLAS Lice

- B. MIFAB
- C. Acudor
- D. Elmdor

PART 3 – EXECUTION

3.1 INSTALLATION

- A. Access doors specified in Division 22 will be installed by other crafts. Not all required access doors are shown. Coordinate with the Contractor to locate access doors for ease of operation and maintenance of concealed equipment.
- B. Installation shall be in accordance with the manufacturer's printed instructions.
- C. Minimum size required:
 - 1. 24" x 24" for plumbing multiple isolation valves and electrical related items in ceilings
 - 2. 8"x8" for plumbing for single isolation valve or shock arrestor

SECTION 22 05 19

PRESSURE AND TEMPERATURE INSTRUMENTS

PART 1 - GENERAL

1.1 **WORK INCLUDED**

A. This section specifies gauges, thermometers, wells and/or pressure and temperature test stations to be installed as specified.

1.2 RELATED WORK

- A. Division 22. Plumbing
 - Plumbing General Provisions
 - Pipe and Pipe Fittings, General 2.
 - Valves, Strainers and Vents 3.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS - GAUGES AND THERMOMETERS

- A. Trerice
- B. Taylor
- C. Marsh
- D. Weksler
- E. Marshalltown
- F. Weiss
- G. Miljoco

2.2 PRESSURE GAUGES

- A. Case and Ring: 4" type 304 stainless steel; liquid filled case with stainless steel bayonet ring.
- B. Dial: White aluminum with black markings
- C. Window: Clear acrylic
- D. Tube: Phosphor bronze and forged brass socket.
- E. Gauge accuracy: +/- 1% over operating range.
- F. For pulsating service, provide impulse dampers.
- G. Without flange for pipe mounting.
- Н. With flange for wall mounting.
- I. Weiss Model: Domestic Water 4CTS LF (Lead Free) 0-100 PSI

DOUGLAS Lice

DOUGLAS DORSEY JR

2.3 THERMOMETER WELLS

- A. Brass or type 300 stainless steel. Machined bar stock, 1-piece construction (Lead Free).
- B. Where installed in insulated piping or vessels, provide with extension neck to match insulation thickness.
- Provide metal-to-metal contact with bulb chamber for maximum sensitivity.
- D. Wells shall be sized to extend a minimum of 50% into pipe.

2.4 THERMOMETERS IN PIPING SYSTEMS OR VESSELS

- A. Die cast aluminum case with baked epoxy finish.
- B. Adjustable angle 9" scale length.
- C. Clear acrylic window.
- D. Brass stem, length to match well.
- E. Red reading organic spirit filled-in magnifying glass column.
- F. White background with black figures and markings.
- G. Brass stems and union connections (Lead Free).
- H. Accuracy: +/- 1% of scale range.
- I. Range:
 - 1. Hot water lines: 30°F to 240°F.

2.5 PRESSURE AND TEMPERATURE TEST STATIONS

- A. "Test Station" fitting to receive either a temperature or pressure probe. Fitting shall be solid brass with two valve cores of Nordel (Lead Free).
 - 1. Fitted with a color coded cap strap with gasket.
 - 2. Acceptable Manufacturer: Peterson Equipment Company.
 - 3. Provide with extension neck to match insulation thickness.
- B. Provide to the Owner a fitted case with:
 - 1. Two 0-100 psi pressure gauges as specified and adapters with 1/8" OD probe.
 - 2. Four 5" stem pocket testing thermometers.
 - a. Two with range 0°F to 220°F for hot water.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install in accordance with drawing details and manufacturer's recommendations.
- B. Provide a ball valve at each gauge (Lead Free).
- C. Locate gauges and thermometers to be easily readable from the floor at a 5'-6" eye level. Use adjustable angle or rigid stem as required. Install gauges in upright position.

- D. Install gauges in the following locations: across pumps, storage tanks, heat exchangers.
- E. Install thermometer in the following locations: At storage tanks, across heat exchangers, across boiler, leaving side of water heater, leaving water side of tempered water valves, and hot water supply and return lines.
 - 1. Hot water lines: 30°F to 240°F.
 - 2. Tempered water valves 0°F to 120°F.

SECTION 22 05 23

VALVES, STRAINERS AND VENTS

PART 1 - GENERAL

1.1 SECTION INCLUDES

- A. Plumbing Valves
- B. Pipe strainer and suction diffusers.

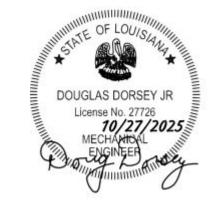
PART 2 - PRODUCTS

2.1 VALVES

A. Pressure Ratings:

- Unless otherwise indicated, use valves suitable for 125 minimum psig working steam pressure (WSP) and 450°F.
- 2. The pressure temperature rating of valves shall be not less than the design criteria applicable to components of the system.

B. Butterfly Valves


- 1. Butterfly valves shall conform to MSS-SP67.
- 2. Liners, inserts and discs shall be suitable for the intended service.
- 3. Valves shall have a full lug type body designed for installation between ANSI standard flanges, and shall be rated at full working pressure with downstream flange removed.
- 4. All valves for domestic use must be lead free.

C. Balancing Valves

- 1. Provide balancing valves with:
 - a. Corrosion resistant plug with resilient seal when required.
 - b. O-ring stem seal.
 - c. Permanently lubricated, corrosion resistant bearings.
- Connections
 - a. Through 2" pipe size use threaded connections.
 - b. For valves 2-1/2" pipe size and larger shall be provided with 150 psig flange connections.
- 3. Provide each valve with:
 - a. Memory stop.
 - b. Plastic drip cap.
 - c. 1/8" gauge tap.
- 4. All valves for domestic use must be lead free.

D. Ball Valves

- 1. Provide ball valves with:
 - a. Blowout proof stem.
 - b. Full size port, 316 stainless steel ball and stem.
 - c. Cast bronze body.
 - d. Threaded ends.
- Seat, seals, thrust washers and packing shall be suitable for the intended service.
- 3. Service rating:
 - a. 150 psi saturated steam.
 - b. 600 psi WOG.

- 4. Provide with memory stop for balancing valves.
- 5. Where Viega ProPress fittings are used, Viega ProPress ball valves may be used.
- 6. All valves for domestic use must be lead free.

E. Gate Valves

- Gate valves shall be designed for repacking under pressure when fully opened.
 Equipped with packing suitable for the intended service.
- 2. When the valve is fully opened, the back seat shall protect the packing and the stem threads from the fluid.
- 3. All gate valves shall have a gland follower.
- 4. Provide solid wedge type gate valves designed and manufactured so that seating surfaces are prevented from contacting until near the point of closure.
- 5. Provide a malleable hand-wheel for all gate valves.
- 6. Provide bronze body, bronze trim, non-rising stem, hand-wheel, inside screw, single wedge or disc, threaded ends up to 2".
- 7. Provide iron body, bronze trim, rising stem, hand-wheel, OS&Y, double wedge, flanged ends over 2".

F. Globe and Angle Valves

- 1. Bronze body 2" and smaller, bronze plug disc and renewable seat ring, union bonnet, malleable iron hand wheel, standard packing with bronze gland follower.
- 2. Iron body 2-1/2" and larger, bronze mounted disc and bronze seat ring, outside screw and yoke, standard packing with gland follower.
- 3. Globe valves shall be designed for repacking under pressure when fully opened.
- 4. Equipped with packing suitable for the intended service.
- 5. When the valve is fully opened, the back seat shall protect the packing and the stem threads from the fluid.

G. Valve Connections

- 1. Provide valves suitable to connect to adjoining piping as specified for pipe joints. Use pipe size valves. Sweated joints are not allowed.
- 2. Thread pipe sizes 2" and smaller.
- 3. Flange pipe sizes 2-1/2" and larger.
- 4. Use screw to solder adapters for copper tubing.
- 5. Use grooved body valves with mechanical grooved jointed piping.
- 6. Use press valves when using copper press systems.

H. Valve Operators

- Provide suitable hand-wheels for gate, globe, angle or drain valves and inside hose bibbs.
- 2. When cocks and valves are furnished with square head stem:
 - a. Provide one wrench for every ten cocks or valves sized 2" and smaller, minimum of two.
 - b. Provide each cock or valve size 2-1/2" and larger with a wrench with setscrew.
- 3. Where butterfly valves are provided:
 - a. Provide gear operators on valves 6" and larger.
 - b. Where valves are located 7' or more above the finished floor in equipment room areas provide chain-operated sheaves. Extend chains to about 5' above floor and hook to clips, arrange to clear walking space.
 - c. Lever lock handle with toothed plate for shut-off service and infinitely adjustable handle with lock and nut and memory stop for throttling service on valves 4" and smaller.

- I. Acceptable Manufacturers (All listed must be lead free):
 - 1. Apollo
 - 2. Crane
 - 3. Dezurik
 - 4. Jenkins
 - 5. Keystone
 - 6. Kitz
 - 7. Milwaukee Valve
 - 8. Nibco
 - Stockham
- J. Check Valves
 - 1. Bronze body, 2" and smaller, bronze disc (Teflon disc for steam service), regrinding swing check, screw-in cap, threaded connection (Lead Free).
 - 2. Iron body, 2-1/2" and larger, bronze trim, non-slam: stainless steel pins and springs, and bronze plate or bronze mounted, regrind-renew check, bronze seat ring and disc. Provide either wafer or threaded lug (Lead Free).
 - 3. Acceptable Manufacturers (All listed must be lead free):
 - a. Apollo
 - b. Keystone
 - c. Kitz
 - d. Milwaukee
 - e. Mission Duochek
 - f. Nibco
- K. Backflow Preventer (All valves for domestic use must be lead free):
 - 1. (2" and smaller) bronze body, reduced pressure zone type with two inline independent check valves with an intermediate relief valve, complete with two full port ball valve shut-offs and ball type test cocks. Bronze strainer on inlet. Provide air gap fitting with full size drain piped to nearest floor drain. Watts 909-QT-S-LF.
 - (2-1/2" and larger) stainless steel or FDA epoxy coated ductile iron reduced pressure zone type with two inline independent check valves with reverse relief valves, two non-rising stem resilient sealed gate valves, cast iron strainer on inlet. Provide air gap fitting piped full size to nearest floor drain. Apollo RP4ALF-YS Watts 909-NRS-BB-S-LF.
- L. Provide valves of same manufacturer throughout where possible.
- M. Provide valves with manufacturer's name and manufacturing location, duty and pressure rating clearly marked on outside of body.
- N. Where valves are installed in insulated piping, provide with extended neck so valve operator and stop plate clears the full thickness insulation.
- O. Provide valve, seat and trim materials suitable for the intended service.
- P. Provide memory stops for all valves used for throttling service. Valves for throttling service shall be butterfly, plug, globe or ball type.
- Q. Float Valve
 - 1. On Off non-modulating action
 - 2. Fully adjustable high and low level settings
 - 3. Float, float linkage and float rod
 - 4. Complete stainless steel material

- 5. Level differential adjustment minimum to 18" maximum
- 6. Stilling well
- 7. Acceptable Manufacturer: CLA-VAL

2.2 PIPE SYSTEMS STRAINERS

A. Body:

- 1. Bronze "Y" pattern or basket as shown on the drawings.
- 2. Line size.
- 3. Threaded strainer blow down port.
- 4. ASTM A #126 Class B Cast Iron Body.

B. Construction:

- 1. 2" size and smaller with screw connections rated 400 psi WOG.
- 2. Over 2" size with flanged connections, rated 125 psi WOG.
- C. Fabricate screens of Monel or type 304 stainless steel:
 - 1. With 20 mesh woven wire in piping systems through 2".
 - 2. With 0.045 perforations in piping systems 2-1/2" and 3".
 - 3. With 0.125 perforations in piping systems 4" and larger.

D. Start-up:

- 1. Provide an additional fine mesh disposable screen for use during start-up operations.
- 2. Remove after 30 days.
- 3. Attach to piping for owners review.

E. Acceptable Manufacturers (All listed must be lead free):

- Apollo
- 2. Crane
- 3. Keckley
- 4. Kitz
- 5. Mueller
- 6. McAlear
- 7. Muesco
- 8. Nibco
- 9. Zurn

2.3 VALVE SCHEDULE

A. Domestic Service

- 1. Gas shut-off service: UL approved for natural gas service.
 - a. Nibco Ball Valve, full port through 1": T-585-70-UL
 - b. Nibco Ball Valve conventional port 1-1/4" through 3": T-580-70-UL
 - c. Resun 2-1/2" and larger: 143 1-UL
 - d. DeZurick 2-1/2" and larger: Series 425 or 435
 - e. Locking Type: Rockford 3/4" and 1" PNP-400
 - a. Mueller 1-1/4" through 4": Lub-O-seal
 - f. Conbraco Ball Valve, full port through 4": 64-100 Series
 - g. Milwaukee Full Port 1/4"-2"
 - h. Milwaukee Standard Port 2-1/2" & 3"
 - i. Kitz Full Port 2" =- #68
- 2. Cold and Hot water service (all listed must be Lead Free):
 - a. Nibco Ball Valve full port through 2": T-585-66-LF
 - b. Nibco Ball Valve 2-1/2" and 3" conventional port: T-580-66-LF
 - c. Nibco Butterfly Valve 4" and larger: LD-2000 EDPM Gaskets

- d. Watts Ball Valve 4" and larger: G-4000-FDA
- e. Viega ProPress Bronze Ball Valves (where Viega ProPress fittings are used)
- f. Kitz Full Port through 2" #868M Lead Free
- g. Milwaukee Full Port 1/4"-2"
- h. Milwaukee Standard Port 2-1/2" & 3"
- i. Apollo Ball Valve Full Port through 2-1/2" 77CALF
- j. Apollo Ball Valve Standard Port 3" 70LF
- k. Apollo Butterfly Valve 4" and Larger LD141
- I. Apollo Press Bronze Ball valves 77 WLF
- 3. Compressed air system
 - a. Nibco Ball Valve full port through 2": T-585-70-66
 - b. Nibco Ball Valve 2-1/2" and 3" conventional port: T-580-70-66
 - c. Watts Ball Valve 4" and larger: G-4000
 - Viega ProPress Bronze Ball Valves (where Viega ProPress fittings are used)
 - e. Milwaukee Valve Full Port through 2" BA-400S
 - f. Apollo Ball valve full port through 1-1/2" 77CA
 - g. Apollo Ball Valve standard port 3" 70
 - h. Apollo Press Bronze Ball valves: 77W
- 4. Check Valve (All listed must be Lead Free):
 - a. Nibco Check Valve: T 413 Y -LF (Teflon Seats)
 - b. Nibco Check Valve 2-1/2" and larger: F 918 Y -LF (Buna-N disc.)
 - c. Nibco Check Valve 2-1/2" and larger: W 920 -W-LF (Wafer)
 - d. Kitz Y & Check: A-22T
 - e. Kitz 2-1/2" and Larger #778 C.I.
 - f. Kitz Wafer Check 2-1/2" and Larger #7032
 - g. Milwaukee Valve 509T
 - h. Apollo Check Valve: 163TLF
 - i. Apollo Check Valve 2-1/2" and larger: 910FLF
 - j. Apollo Press Check Valve: 163TPR-LF
 - k. Apollo Check Valve 2" and larger 910WE-LF (Wafer)
- 5. Globe Valve:
 - a. Nibco Globe Valve: T 235 Y (Teflon Seats)
 - b. Nibco Globe Valve 2-1/2" and larger: F 718 B (Bronze Seats)
 - c. Milwaukee Valve 590T
 - d. Apollo Globe Valve 120T (Teflon Seats)
 - e. Apollo Glove Valve 121T (Bronze Seats)
- 6. Gate Valve
 - a. Nibco Gate Valve through 2": T-133
 - b. Nibco Gate Valve 2-1/2" and Larger: F-617
 - c. Milwaukee Valve Through 2" 1140
 - d. Milwaukee Valve 2-1/2" and Larger F2885A
 - e. Apollo Gate Valve through 2": 106T
 - f. Apollo Gate Valve: 2-1/2 and Larger: 611F)

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install valves with stems upright or horizontal, not inverted.
- B. Install valves for shut-off and isolating service at each piece of equipment, at vertical risers, and where shown on the drawings.

- C. Use butterfly valves and ball valves in domestic hot water and domestic cold water systems interchangeable in place of gate and globe valves.
- D. Use butterfly valves and ball valves in circulating water systems, for balancing duty.
- E. Provide drain valves at main shut-off valves and low points of piping and apparatus so the systems can be entirely drained.
 - 1. 1" valve for pipes 6" and larger.
 - 2. 3/4" valve for pipes smaller than 6".
 - 3. Terminate with pipe plug.
 - 4. Drain valves shall be ball valves.
- F. Provide isolation valves in domestic water lines to isolate all equipment, restrooms, hose bibbs, and where shown on the drawings.
- G. Where valves are installed in insulated pipe, valve operator shall have an insert so the lever or handle will not damage the insulation. Install handles so the lever or handles will not damage the insulation.
- H. Provide clearance for installation of insulation and access to valves.
- I. Provide access panels where valves are not exposed.
- J. Float valves / stilling wells provided and installed in fire / domestic water surge tanks for water level control. Stilling wells provided around float to prevent turbulence ripples or wind from interference.

3.2 VALVE TAGS

- A. Furnish valves with 1-1/2" diameter brass valve tags with stamped, black or red-filled numbers. Service designations shall be 1/4" letters, and valve numbers shall be 2" letters. Engineer shall approve Service designations. Secure tags to valves by use of brass "S" hooks or brass chain. Secure chain to valve by use of copper or Monel meter seals. Valve tags are not required if the valve is located within 3' of the equipment being served and the service is obvious.
- B. Mount charts and drawings listing functions of each valve and its location in a metal and glass frame. Place charts and drawings as directed; in addition, on the record drawings mark the symbols and furnish a valve schedule properly identifying the valve number, service, exact location, the material being piped, and the room number of area that the valve services. This schedule shall be furnished on reproducible drafting paper or film suitable for reproduction on an Ozalid machine. The Owner shall approve the size of drafting paper. Provide a copy of the valve chart in the Operating and Maintenance Manuals.

3.3 PIPE SYSTEMS STRAINERS

A. Provide strainers in supply piping to circulating pumps, thermostatic mixing valves, before solenoid valves and trap primer valves.

SECTION 22 07 16

VESSEL INSULATION

PART 1 - GENERAL

1.1 WORK INCLUDED

- A. Furnish and install insulation for both high and low temperature vessels.
- B. Low temperature installations include expansion tanks, air eliminators, chiller nozzles, chiller heads and other vessels containing liquids 60°F and below.
- C. High temperature installations include expansion tanks, air eliminators, domestic water storage tanks, boiler stack / transition and other vessels containing liquids above 60°F.

1.2 QUALITY ASSURANCE

- A. The intent of insulation specifications is to obtain superior quality workmanship resulting in an installation that is absolutely satisfactory in both function and appearance. Provide insulation in accordance with the specifications for each type of service and apply as recommended by the manufacturer and as specified.
- B. An approved contractor for this work under this Division shall be:
 - 1. A specialist in this field and have the personnel, experience, training, skill, and the organization to provide a practical working system.
 - 2. Able to furnish evidence of having contracted for and installed not less than 3 systems of comparable size and type that have served their owners satisfactorily for not less than 3 years.
- C. All vessel insulation used on the project inside the building must have a flame spread rating not exceeding 25 and a smoke developed rating not exceeding 50, as determined by test procedures ASTM E 84, NFPA 255 and UL 723. These ratings must be as tested on the composite of insulation, jacket or facing, and adhesive. Components such as adhesives, mastics and cements must meet the same individual ratings as the minimum requirements and bear the UL label.
- D. Condensation on any insulated vessel system is not acceptable.
- E. Replace insulation damaged by either moisture or other means. Insulation that has been wet, whether dried or not, is considered damaged. Make repairs where condensation is caused by improper installation of insulation, also repair any damage caused by the condensation.
- F. Where existing insulated vessel, or other surfaces are tapped, remove existing insulation back to undamaged sections for hot surfaces or to nearest insulation stop for cold surfaces, and replace with new insulation of the same type and thickness as existing insulation. Apply as specified for insulation of the same service.

1.3 APPROVALS

A. Submit product data on each insulation type, adhesive, and finish to be used in the work.

Make the submittal as specified in Division 1 General Requirements and obtain approval before beginning installation. Include product description, list of materials and thickness for each service and location and the manufacturer's installation instructions for each product.

VESSEL INSULATION 22 07 16-1

B. Make an application of each type of insulation to display the material, quality and application method. Obtain approval of the sample application before proceeding with installation of the work.

1.4 RELATED WORK

A. Division 9 Finishes. Painting and color-coding

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

- A. Glass fiber pipe & tank insulation:
 - 1. Schuller Type 817
 - 2. Owens-Corning Type 705
 - 3. Knauf 2.8 PCF
- B. Aluminum Jacketing:
 - Childers
 - 2. Pabco
 - 3. RPR
- C. Monel Staples
 - 1. Bostich Monel
 - 2. Duo-Fast Monel
 - 3. Markwell Monel
- D. Fiberglass reinforcing cloth mesh:
 - 1. Perma Glass Mesh
 - 2. Alpha Glass Mesh
 - 3. Childers Chil-Glas

2.2 CEMENT AND COATINGS

- A. Cement. Provide Childers CP-97 fibrous adhesive to seal insulation for low temperature vessels.
- B. Coating: Furnish Childers CP50AHV2 coating to provide a finish coat and to secure finish cloth for high temperature vessels.
- C. Sealant: Use Childers CP-76 to seal the joints of insulation on low temperature vessels.
- D. Finish: Use Childers CP-50 finish to adhere and coat the canvas finish on low temperature vessels.
- E. Glass Cloth: Furnish 10 X 10 white glass cloth.

PART 3 - EXECUTION

3.1 LOW AND HIGH TEMPERATURE VESSELS (FIBERGLASS)

- A. Apply a first layer of insulating board. Band the board on immediately after application, using bands on 12" centers, drawn tight and securely fastened.
- B. Apply successive layers of insulation as specified for the first layer, with joints staggered.

 After insulation has been applied, finish with Childers CP-35 reinforced with glass cloth per

VESSEL INSULATION 22 07 16-2

manufacturer's recommendations. Provide a flood coat of CP-11 with #10 glass cloth.

- C. To insulate removable heads, provide two equal sections of heavy-gauge, galvanized sheet metal covers, angle reinforced and lined with insulation board. Make covers easily removable to allow free access to the heads for inspection, cleaning and dismantling. Provide suitable flanges on the sections with neoprene gaskets between them, permitting a tight seal when the two sections are bolted together. Fill the voids with glass fiber wall cavity insulation.
- 3.2 ALUMINUM JACKETING (Insulated vessels outdoors above grade)
 - A. Apply aluminum jacket on vessels according to manufacturer's recommendations using aluminum strapping and seals to provide weather tight covering.
 - B. Aluminum jacketing is not considered as contributing to the vapor barrier or the insulation jacket. The vapor barrier must be sufficient in itself for this function.
 - C. Install straps on 12" centers.

3.3 VESSEL INSULATION REQUIREMENTS

- A. Insulate all low and high temperature vessels located exterior (outside) of the building, including the following:
 - 1. Air separators
 - 2. Expansion Tanks
 - Chemical feeders
 - 4. Chilled water system volume tanks
 - 5. Insulation thickness shall match thickness of adjoining pipe insulation
- B. Insulate all low temperature vessels located interior (inside of the building, including the following:
 - 1. Air separators
 - 2. Expansion Tanks
 - Chemical feeders
 - 4. Chilled water system volume tanks
 - 5. Insulation thickness shall match thickness of adjoining pipe insulation
- C. Insulate the following high temperature vessels located interior (inside the building).
 - 1. Air Separators
 - 2. Insulation thickness shall match thickness of adjoining pipe insulation
- D. As indicated on the drawings

END OF SECTION

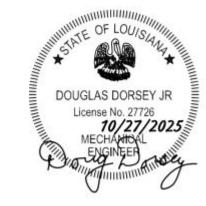
VESSEL INSULATION 22 07 16-3

SECTION 22 07 19

PLUMBING PIPING INSULATION

1.1 WORK INCLUDED

A. Furnish and install piping insulation, jackets, accessories and covering of specified materials. The insulation shall be used for high and low temperature piping applications including domestic hot and cold water, roof and overflow drain sump bodies and rain leaders, horizontal sanitary drain piping which receives condensate, make-up water and pool heating water.


1.2 QUALITY ASSURANCE

- A. The intent of insulation specifications is to obtain superior quality workmanship resulting in an installation that is absolutely satisfactory in both function and appearance. Provide insulation in accordance with the specifications for each type of service and apply as recommended by the manufacturer and as specified.
- B. An approved contractor for this work under this Division shall be:
 - 1. A specialist in this field and have the personnel, experience, training, skill, and the organization to provide a practical working system.
 - 2. Able to furnish evidence of having contracted for and installed not less than 3 systems of comparable size and type that have served their owners satisfactorily for not less than 3 years.
- C. All piping insulation used on the project inside the building must have a flame spread rating not exceeding 25 and a smoke developed rating not exceeding 50, as determined by test procedures ASTM E 84, NFPA 255 and UL 723. These ratings must be as tested on the composite of insulation, jacket or facing, and adhesive. Components such as adhesives, mastics and cements must meet the same individual ratings as the minimum requirements and bear the UL label.
- D. Condensation on any insulated piping system is not acceptable.
- E. Replace insulation damaged by either moisture or other means. Insulation that has been wet, whether dried or not, is considered damaged. Make repairs where condensation is caused by improper installation of insulation. Also repair any damage caused by the condensation.
- F. Where existing insulated piping, or other surfaces are tapped, remove existing insulation back to undamaged sections for hot surfaces or to nearest insulation stop for cold surfaces, and replace with new insulation of the same type and thickness as existing insulation. Apply as specified for insulation of the same service.

1.3 APPROVALS

- A. Submit product data on each insulation type, adhesive, and finish to be used in the work. Make the submittal as specified in Division 1 General Requirements and obtain approval before beginning installation. Include product description, list of materials and thickness for each service and location and the manufacturer's installation instructions for each product.
- B. Make a field application of each type of insulation to display the material, quality and application method. Obtain approval of the sample application before proceeding with installation of the work.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

- A. Glass fiber pipe insulation:
 - 1. Johns-Manville Micro-Lok AP-T
 - 2. Owens-Corning ASJ/SSL
 - Knauf ASJ/SSL
- B. Cellular Glass Insulation (Foamglass):
 - Pittsburg Corning
 - 2. Cell-U-Foam
- C. Aluminum Jacketing:
 - Childers
 - 2. Pabco
 - 3. RPR
- D. Fiberglass reinforcing cloth mesh:
 - 1. Perma Glass Mesh
 - 2. Alpha Glass Mesh
 - 3. Childers Chil-Glas
 - 4. Vimasco
- E. Mastics and Adhesives
 - 1. Childers
 - 2. Foster
 - Vimasco
 - 4. Armstrong 520 Adhesive
- F. Elastomeric Insulation
 - 1. Armacell
- G. Weather Resistant Coating
 - WB Armaflex Finish
- H. Glass fiber blanket insulation
 - Manville R-series Microlite FSKL
 - 2. Owens-Corning eD75 or ED100 RKF
 - 3. Knauf 0.75 PCF FSK

2.2 FIBERGLASS PIPE INSULATION

- A. Heavy density, dual temperature fiberglass insulation with factory applied, all service, reinforced vapor barrier jacket having integral laminated vapor barrier. Provide with a factory applied pressure sensitive tape closure system and matching butt strips. Supply in thickness as shown.
 - 1. Thermal conductivity 0.23 @ 75°F mean (ASTM 335).

2.3 ELASTOMERIC INSULATION

A. Insulation material shall be flexible, closed-cell elastomeric insulation in tubular or sheet form. Material shall have a flame spread rating of 25 or less and a smoke developed rating of 50 or less when tested in accordance with ASTM E84, latest revision. Sheet material with a thickness greater than 3/4" shall have a flame spread rating of 25 or less and a smoke

developed rating of 100 or less when tested in accordance with ASTM E84, latest revision. In addition, the product, when tested, shall not melt or drip flaming particles, and the flame shall not be progressive. In addition, all materials shall pass simulated end-use fire test. Minimum ³/₄" thick.

1. Thermal conductivity 0.27 at 75°F mean (ASTM C177 or C518)

2.4 CELLULAR GLASS INSULATION

A. ASTM C552:

- 1. "k" value of 0.35 @ 75°F ("ksi" value of 0.047 @ 24°C);
- 2. 8.0 lb/cu.ft. (128 kg/cu.m.) density

2.5 INSULATION/SHIELD AT HANGERS

- A. Field fabricated: Use 360° sections of rigid foamglass insulation that will support the bearing area at hangers and supports. Further support insulation at hangers and supports with a shield of galvanized metal covering at least half of the pipe circumference, and conforming to the schedule. Insulation shall extend at least 1" beyond metal shield on each end. When pipe is guided at top and bottom, metal shields shall cover the whole pipe circumference. Adhere metal shield to insulation so that metal will not slide with respect to insulation with ½" aluminum bands (2) per shield.
 - 1. Sections of foam glass insulation may be used of the same outside diameter of the adjoining pipe insulation.
 - 2. Minimum thickness of foam glass insulation shall not be less than 1" thick.
- B. Pipe saddles: Formed galvanized sheets at each support point for insulated pipe, shaped to fit pipe, and covering bottom half of pipe. Length at saddle shall be not less than twice the insulation outside diameter or more than 22". Provide 18 gauge through 4" pipe and 16-gauge 5" pipe and above.

2.6 SEALANT, ADHESIVE AND FINISH

- A. Lap Adhesive. Provide Childers CP-82 adhesive.
- B. Vapor Barrier Finish:
 - 1. Indoors: Provide as insulation coating Childers CP-35, white.
 - 2. Outdoors: Provide as insulation coating Childers Encacel X.
 - 3. Underground: Provide Childers CP-22/24 for fittings and areas. Pittwrap cannot be used.
- C. Sealant. Provide Childers CP-76 vapor barrier sealant.
- D. Lagging Adhesive. Provide Childers CP-50.
- E. Other products of equal quality will be acceptable only upon approval.

2.7 ALUMINUM JACKETING

- A. Finish insulated piping outdoors with a smooth prefabricated Z-lock aluminum jacket 0.016" thick with factory applied 1 mil polyethylene/40 lb and Fab strap. Kraft moisture barrier. Childers Lock-On or approved equal.
- B. Valves, Fittings and Flanges. For finishing valves, fittings, flanges and similar installations, provide formed aluminum covers, 0.024" thick.
- C. Straps and Seals. Provide ½" x 0.020 stainless steel strapping and seals for jackets and

covers according to manufacturer's recommendations.

2.8 GLASS FIBER BLANKET INSULATION

A. Minimum density of 1.0 PCF, 2" thick, installed R value to be 6.0 or better at 75°F mean, facing of 0.35 mil foil reinforced with glass yarn mesh and laminated to 40 lbs fire resistant kraft.

PART 3 - EXECUTION

3.1 INTERIOR PIPING

- A. Cover all piping with glass fiber, heavy density, dual temperature pipe insulation with a vapor barrier jacket. Apply insulation to clean, dry pipes. Longitudinal seams shall be joined firmly together and sealed with self-sealing lap joints. Butt insulation joints firmly together and seal with a 3" wide ASJ butt strip seal.
- B. Install hanger with protective shield, on the outside of all insulation.
- C. Where domestic water pipes (1/2" & 3/4" pipe sizes) are installed on trapeze type hangers, provide galvanized sheet metal protection shields at these locations. Place insulation jacket directly on hanger. Incompressible, load bearing insulation segments are not required.
- D. Pipe Saddles: Formed galvanized sheets at each support point for insulated pipe, shaped to fit pipe, and covering bottom half of pipe. Length at saddle shall be not less than twice the insulation outside diameter. Provide 18-gauge through 4" pipe and 16-gauge for 5" pipe and above.
- E. Seal ends of pipe for drinking chilled water insulation with vapor barrier mastic at valves, flanges, fittings and every 21' on straight runs of piping. Mastic should extend on top of ASJ jacket, across the glass, down onto the pipe making a complete seal.
- F. Apply a smooth flood coat of white lagging Foster 8142W over all exposed insulation.
- G. <u>PIPING shall have entire installation covered with 0.02" thick, industry standard color-coded PVC covering and fittings.</u>
- H. Piping to be insulated as specified above:
 - 1. All hot and cold water.
 - 2. Make-up water
 - 3. Horizontal sanitary drain piping that receives condensate
 - 4. **Chilled Water Piping** shall be insulated with cellular glass insulation (Foamglass)

3.2 PIPING OUTDOORS ABOVE GRADE

- A. Insulate all water piping exterior of building above grade with rigid foam insulation and aluminum jacketing.
- B. Adhere the vapor barrier jacket longitudinal seam with vapor barrier adhesive.
- C. Cover all valves, fittings and flanges with factory made molded or field fabricated segments of pipe insulation of a thickness and material equal to the adjoining insulation. Adhere segments together with no voids, using CP-82 adhesive. Secure fitting insulation covers and segments in place with ½" wide glass filament tape.
- D. Apply a tack coat of fitting mastic over the insulation and tape.

- E. Neatly embed with 10 x 10 fiberglass cloth into the tack coat.
- F. Apply mastic over the fiberglass cloth to a thickness where the fabric is not visible after completion.
- G. Seal ends of pipe insulation with vapor barrier mastic at valves, flanges, fittings and every 21' on straight runs of piping. Mastic should extend on top of ASJ jacket, across the foam, down onto the pipe, making a complete seal.
- H. Finish with aluminum jacketing as specified.

3.3 FLANGE, VALVE AND FITTING INSULATION

- A. Cover valves and flanges with fabricated segments, fittings with two-piece factory molded fittings, and both of matching pipe insulation type and thickness equal to that of the adjoining pipe. Fittings and fabricated segments shall be securely held in place.
 - Apply a tack coat of insulating mastic to the insulated fitting to produce a smooth surface.
 - 2. After mastic is dry, apply a second coat of vapor barrier mastic. Neatly embed with 10 x 10 fiberglass cloth into the tack coat.
 - 3. Overlap mastic and fiberglass cloth by 2" on adjoining sections of pipe insulation.
 - 4. Apply a second coat of mastic over the fiberglass cloth to present a smooth surface.
 - 5. Apply mastic to a wet film thickness of 3/64".
 - 6. Fabric shall not be visible after completion.
 - 7. Vapor seal flanges, valves and fittings with Childers CP-35.
- B. PVC fitting covers are not acceptable.

3.4 ALUMINUM JACKETING (Insulated Piping Outdoors Above Grade)

- A. Apply smooth aluminum jacket on piping, valves, fittings and flange covers according to manufacturer's recommendations, using stainless steel strapping and seals, to provide weather tight covering and to shed water.
- B. Aluminum jacketing is not considered as contributing to the vapor barrier or the insulation jacket. The vapor barrier must be sufficient in itself for this function. Lap each adjoining jacket section a minimum of 3" to make a weather tight seal.
- C. Install straps on 9" centers and at each circumferential lap joint.
- D. Cover and seal all exposed surfaces.
- E. The use of screws and rivets is not approved.
- F. Provide isolation (30# felt) between the aluminum jacket and the sheetmetal protection shield at each pipe support point.

3.5 MISCELLANEOUS

- A. Install materials after piping has been tested and approved.
- B. Apply insulation on clean, dry surfaces only.
- C. Apply weather protective finish on elastomeric insulation installed in non-conditioned spaces. Provide a minimum of three coats.

3.6 INSULATION THICKNESS

111002711101111101111200	
	THICKNESS
INSULATED UNIT	(Inches)
Exposed Roof Drain Bodies and Horizontal Roof Drain Leaders	1-1/2
Exposed Roof Overflow Drain Bodies and Horizontal Drain Leaders	1-1/2
Domestic Cold Water/Make-Up Water Piping/Drinking Chilled Water	1
Horizontal Sanitary Drain Piping Which Receives Condensate	1
Condensate Drain Piping	1
Domestic Hot Water Piping, 1-1/2" Pipe and Smaller	1
Domestic Hot Water Piping, 2" Pipe and Larger	1-1/2
Chilled Water	2

SECTION 22 11 16

DOMESTIC WATER PIPING AND APPURTENANCES

PART 1 - GENERAL

1.1 WORK INCLUDED

A. Furnish and install domestic hot and cold water piping.

1.2 RELATED WORK

- A. Division 22 Plumbing
 - 1. Valves, Strainers and Vents
 - 2. Pipe and Pipe Fittings General
 - 3. Plumbing Piping Insulation
 - 4. Plumbing Fixtures and Fixture Carriers

PART 2 - PRODUCTS

2.1 PIPING AND FITTINGS

- A. Below Slab on Grade Piping for Water Entries:
 - 1. 2-inch and smaller, provide ASTM B88 Type K (heavy wall) annealed tempered (soft) seamless copper water tube. No joints below slab entries.
 - 2. 2-1/2-inch and 3-inch, provide ASTM B88 Type K (heavy wall) annealed tempered (soft) seamless copper water tube, 20 ft. straight lengths. One joint allowed below slab entry using wrought copper, solder-joint pressure fittings: ASME B16.22 with an approved brazing filler metal or pipe can be shop bent for no joint installation by using a "bending" temper tubing.
 - 3. 4-inch and larger, provide ductile iron pipe with mechanical joints, ANSI A21.6.
- B. Below Grade Piping Outside Building (beyond 5'-0" of building): Provide PVC water main pipe 4 inch through 12 inch in diameter in conformance with AWWA C900. When using 3" or smaller provide Schedule 40 PVC ASTM D1785 with ASTM D-2466 socket type fittings. Provide fittings in conformance with ASTM 2466. Furnish pipe with a minimum pressure rating of 150 lbs. per square inch. Provide PVC pipe as manufactured by Johns-Manville, CertainTeed, Clow or approved equal.
- C. Below Slab on Grade Piping. Furnish ASTM B 88 and ANSI/NSF Standard 61 annealed tempered (soft), Type K copper water tube. Run continuous with no joints under the floor slab. Provide copper pipe corrosion protection as specified in this Section.
- D. Above Slab Piping. Provide seamless ASTM B 88 and ANSI/NSF Standard 61 drawn tempered (hard) Type L copper water tube with wrought copper or bronze fittings with solder-joints, ANSI B16.22. Solder material shall be 95-5 (lead free) (Tin-Antimony-Grade 95TA) ASTM B 32.
- E. Unions. Provide 150 lb. standard unions with ground joint and bronze seat. Flange joints larger than 2 inches. Provide dielectric isolating unions at junctions or connection between metallic piping of dissimilar metal. Provide pipe threads with standard taper pipe threads ANSI B2.1.
- F. Alternate Method of Joining Copper Pipe and Tubing: Press Fittings: Copper press fitting shall conform to the material and sizing requirements of ASME B16.51. O-rings for copper press fittings shall be EPDM. VIEGA. The system intended for use shall be approved by

submittal. Systems from various manufacturers may vary in technology. The field personnel shall carry training credentials from the approved manufacturer for the project. Mixing of fittings from different manufacturers is strictly prohibited.

2.2 WATER HAMMER ARRESTORS

- A. Provide piston type hydraulic engineered/manufactured water hammer arrestors in cold and hot water supply lines in chases or walls to each fixture branch or battery of fixtures serving quick closing valves of electrical, pneumatic, spring loaded type, or quick hand closure valves on fixture trim. Provide water hammer arrestors at the end of the branch line between the last two fixtures served. Provide Precision Plumbing Products, Inc., or equal. Size units according to water hammer arrestor's Standard PDI WH-201; refer to schedule on drawings.
- B. Install all water hammer arrestors so as to attain 100% effectiveness according to Plumbing and Drainage Institute PDI-WH201 Table 5, 6 and 6-A for water hammer arrestors.
- C. All water hammer arrestors shall be installed in a vertical position.
- D. All water hammer arrestors shall be accessible and shall have access panels where required. Arrestors located above ceilings in fixture drops will not be acceptable. Refer to sizing and placement data as indicated in PDI Standard PDI-WH-201.

PART 3 - EXECUTION

3.1 DRAINAGE

A. Install water piping systems with uniform horizontal grade of 1/8 inch per 10 foot, minimum, to low points to provide complete system drainage. Where constant pitch cannot be maintained for long runs, establish intermediate low points and rise to new level. Grade branches to drain to mains or risers. Unless otherwise indicated, terminate low points of risers with drain valve piped to nearest hub or floor drain.

3.2 STERILIZATION

A. Sterilize the water system with solution containing not less than 50PPM available chlorine. Allow chlorinating solution to remain in system for period of 8 hours (minimum). Have valves and faucets opened and closed several times during the period. After sterilization, flush the solution from the system with clean water until residual chlorine content is less than 0.2 parts per million.

3.3 TESTING

- A. Test under a cold water hydrostatic pressure of 1-1/2 times operating pressure (150 psig minimum) and carefully check for leaks. Repair leaks and retest system until proven watertight.
- B. Test the domestic water piping system at 150psig hydrostatic pressure, maintained for 6 hours.
- C. Use only potable water for the test.
- D. Perform the test before fixtures, faucets, trim or final connections are made to equipment.
- E. If the system is tested in sections, the entire domestic water piping system shall be submitted to a final test, employing the specified procedure.

- F. Do not insulate or conceal piping systems until tests are satisfactorily complete.
- G. If any leaks or other defects are observed, suspend the test and correct the condition at once. Repeat testing until leaks are eliminated and the full test period is achieved.
- H. The satisfactory completion of testing does not relieve the Contractor of responsibility for ultimate proper and satisfactory operation of piping systems and their accessories.

SECTION 22 11 19

PIPING AND PIPING APPURTENANCES FOR COLD WATER MAKEUP

PART 1 - WORK INCLUDED

1.1 SCOPE

A. Furnish and install piping and piping appurtenances for cold water makeup piping.

1.2 RELATED WORK

- A. Division 22 Plumbing
 - 1. Valves, Strainers and Vents
 - 2. Plumbing Pipe and Pipe Fittings
 - 3. Plumbing Piping Insulation

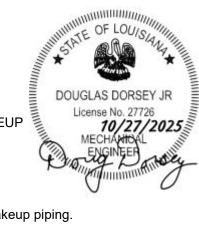
PART 2 - PRODUCTS

2.1 PIPE AND FITTINGS

A. Provide seamless, hard-drawn, Type L, copper water tube conforming to ASTM B88, and wrought copper fittings.

2.2 BACKFLOW PREVENTER

- A. Watts Series 909 reduced pressure principal backflow preventer.
- B. Factory assembled components as follows:
 - 1. Isolating, shutoff, full port ball valves.
 - 2. Incoming bronze strainer.
 - Test cocks.
 - 4. Fixed air gap assembly.


PART 3 - EXECUTION

3.1 INSTALLATION

A. Install according to manufacturer's instructions.

3.2 BACKFLOW PREVENTERS

- A. Provide backflow preventers at the following locations.
 - 1. HVAC Systems cold water make-up including chilled water, hot water and condenser water.
 - 2. Pumping systems including water utility service and water softening equipment.
 - 3. Where required by Code or local jurisdiction.
- B. Installation according to manufacturer's recommendations.
 - 1. Connect drain with fixed air gap assembly.
 - a. Pipe full size discharge from relief valve of RPZ to nearest floor drain or floor sink of proper size. Reference manufacturer's suggested sizing of drains.
 - 2. Provide pipe unions on inlet, outlet and discharge connection of the assembly for complete removal.
 - 3. Provide isolation valve upstream of backflow assembly to allow complete removal of listed assembly.

- 4. Install backflow preventer assembly horizontally in an accessible location for testing and maintenance at a height not to exceed 60" above finished floor and no lower than 12" from finished floor to air gap outlet.
- C. Provide certified testing of all backflow preventers.
 - Include certificates in O&M Manuals.

SECTION 22 13 16

SOIL, WASTE AND SANITARY DRAIN PIPING, VENT PIPING AND APPURTENANCES

PART 1 - GENERAL

1.1 WORK INCLUDED

- A. Furnish and install piping in buildings and underground laterals to 5 foot outside of building.
- B. Only SOLID Core PVC is acceptable. Cellular Core PVC pipe is not permitted.

1.2 RELATED WORK

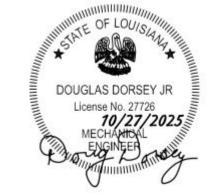
- A. Site Work:
 - 1. Sanitary Sewers
 - 2. Excavation, Trenching and Backfilling for Utilities
- B. Division 22 Plumbing:
 - 1. Pipe and Pipe Fittings
 - 2. Plumbing Fixtures and Fixture Carriers
 - 3. Drains, Cleanouts and Hydrants
 - 4. Earthwork
 - 5. Plumbing Piping Insulation

1.3 REFERENCES

- A. CISPI Cast Iron Soil Pipe Institute
- B. ASTM American Society for Testing and Materials

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS


- A. All No-Hub clamps must have 4 bands minimum. Sizes 5" through 10" shall have six bands minimum.
 - 1. No-Hub Clamps Sanitary Waste:
 - a. Husky SD 4000
 - 2. No-Hub Clamps Vents
 - a. Husky SD 2000
 - b. Mission Rubber Co., LLC Heavy Weight Couplings
 - 3. Clamp-All Hi-TorQ 80 or approved equal
- B. Provide Fernco "Pro-flex" shielded couplings Series 3000 with one piece neoprene gasket for all cast iron pipe transitions to Schedule 40 DWV pipe penetrations through slabs. Sizes 1-1/2" through 8" Series 3000.
- C. Cast Iron Soil Pipe and Fittings:
 - 1. AB&I
 - 2. Charlotte Pipe and Foundry Co.
 - 3. Tyler Pipe / Soil Division

2.2 DRAIN PIPE AND FITTINGS

- A. Above Slab Pipe:
 - No-hub cast iron soil pipe and fittings shall conform to CISPI 301 and ASTM

A888.

- 2. Pipe shall conform to ASTM A74.
- 3. No-hub couplings shall meet or exceed the latest specification standard CISPI 310 or ASTM C-1540 and conform to FM 1640. CISPI 310 Couplings shall be listed by NSF International.
- 4. Rubber Gaskets for cast iron soil pipe and fittings shall conform to ASTM C564
- 5. All Cast Iron Soil Pipe and Fittings shall be marked with the collective trademark of the Cast Iron Soil Pipe Institute
- B. Below Slab on Grade Piping:
 - 1. Schedule 40 PVC plastic pipe and DWV fittings.
 - 2. Solvent welded DWV joints shall conform to IAPMO Installation Standard IS-9.
 - 3. Pipe and fittings shall conform to ASTM D 1784, ASTM D 1785, ASTM D 2665, ASTM D 3311 and NPS Standard 14 & 61.

2.3 VENT PIPE AND FITTINGS

- A. Above Slab Pipe:
 - No-hub cast iron soil pipe and fittings shall conform to CISPI 301 and ASTM A888.
 - 2. Pipe shall conform to ASTM A74.
 - No-hub couplings shall conform to CISPI 310 and shall be listed by NSF International
 - 4. Rubber gaskets for cast iron soil pipe and fittings shall conform to ASTM C564
- B. Below Slab on Grade Piping:
 - 1. Provide Schedule 40 PVC with DWV fittings with solvent welded joints. Pipe and fittings shall conform to ASTM D1784-82.
- C. Above Slab Pipe.
 - Drainage-waste-vent copper pipe and fittings for waste stub-outs for all fixture locations.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. All above and below slab soil, waste, sanitary drain and vent piping installation methods shall be in accordance with Cast Iron Soil Pipe Institute Standards.
- B. Above ground installation in the horizontal position shall be supported at every hub (hub & spigot or hubless type). Hangers are to be placed within 18" of hub or coupling. For large diameter fittings, 5 inches and larger shall be braced to prevent horizontal movement. Every branch opening or change of direction, braces, blocks, rodding or other suitable method shall be used to prevent movement. Riser clamps to be used for each floor, not to exceed 15'-0".
- C. All above and below slab PVC sanitary waste and vent piping installation methods shall be in accordance with IAPMO Installation Standard 18-9 for Schedule 40 PVC-DWV, per manufacturer's recommendations and applicable standards.
- D. Tracer wires shall be installed on all underground PVC sanitary sewer lines installed outside the building slab.
- E. All PVC underground shall be installed in accordance with ASTM D2321.

3.2 GRADE

A. Give horizontal pipe grade of ¼-inch per foot where possible, but not less than 1/8 inch per foot unless otherwise shown.

3.3 DRAIN PIPE AND FITTINGS

- A. Offsets and Fittings.
 - 1. Use reduction fittings to connect two pipes of different diameter.
 - 2. Change directions by appropriate use of 45-degree wyes, long-sweep quarterbends, and sixth-, eights-, and sixteenth-bends. Sanitary tees can be used on vertical stacks. Use long sweeps at the base of risers.
 - 3. Provide a separate trap at each fixture, unless a trap is built into the fixture. Provide a deep seal trap at each floor drain and hub drain. Place traps so that the discharge from any fixture will pass through only one trap before reaching a building drain.
- B. Hub Drains. Install hub drains where indicated, with the top of the hub 1/2 above the finished floor, unless otherwise indicated on the drawings.
- C. Cleanouts. Install cleanouts the same size as the soil waste lines in which the cleanouts are placed; however, no cleanout should be larger than 4 inches in diameter.
 - 1. Where cleanouts occur in pipe chases, bring the cleanouts through the walls and install covers. Where cleanouts occur in floor slabs, set flush. Reference drawing schedule.
 - 2. Provide cleanouts where soil lines change direction, every 50 foot on long runs, or as shown on the drawings, at the end of each horizontal waste line, and at the base of each riser (and at each increase in pipe size).
 - 3. Cleanouts shall occur at the end of each battery of water closets, urinals, lavatories, sinks, and single water closets. Cleanouts shall be installed so as to access the main sanitary or soil line. Extend and offset above flood rim of water closet.
 - 4. Double sanitary tees and double quarter bends do not allow for easy access to main lines, therefore these types of fittings are not allowed.
- D. Floor Drains. Locate floor drains 1/2-inch below finish floor elevation unless otherwise shown.

3.4 VENT PIPING

- A. Make vent connections to vent stacks with inverted wye fittings. Extend full-size vents through the roof to at least 6 inches above the roof.
- B. Flash the roof penetration with 6 lb. lead flashing approximately 24 inches square. Flange the flashing to the lead sleeve. Extend the flashing up and around the vent pipe. Turn the flashing down inside the pipe at least 2 inches to make a watertight joint. Flashing shall comply with the roofing manufacturer's requirements. Reference the Architectural Drawings for exact requirements.
- C. Locate vent piping through roof a minimum horizontal distance of not less than 20 feet from any air intake opening or supply fan.

3.5 TESTING

- A. Below Slab on Grade and All Floors in Multi-Story Buildings:
 - 1. Test pipe below slab on grade before backfilling and connecting to city sewers.
 - 2. Maintain not less than 10 foot of hydrostatic head for 1 hour without a leak.
 - 3. Before acceptance of the work the contractor must ensure the piping is in working order before and after the slab is poured. To ensure this the contractor must test completed systems in the presence of the Architect, Engineer and authorities having

- jurisdiction after installation is complete.
- 4. Maintain the test on the system till after the slab is poured. Provide an accessible connection that may be reviewed by Architect, Engineer and authorities having jurisdiction prior to and after the slab is poured.
- 5. Test drainage piping systems in accordance with governing codes and the requirements specified. Provide equipment and materials and make test connections required to execute tests.
- 6. Test drainage and waste piping hydraulically by filling system to its highest point or, whichever is greater, at a static head of 10 feet. Leaks at any joint shall be sufficient cause for rejection.
- 7. Air tests may be substituted for hydraulic tests by forcing air into the closed system at a uniform pressure sufficient to balance a column of 10 inch hg in height.
- 8. Under any of the previously described tests, the water height shall remain constant, after stabilization, for not less than 15 minutes without any further addition of water.
- B. System Test. After the various sections of soil, waste and vent piping are installed, but before fixtures are connected, test the system by:
 - 1. Plugging outlets.
 - 2. Filling vertical sections of multiple story buildings of not less than three floors at a time with water. Provide wyes as required to facilitate plugging.
 - 3. Test for 6 hours without any drop in the water level.

3.6 RODDING SEWERS

- A. All sanitary soil and waste lines, both in the building and out, shall be rodded out and flushed out after completion of construction and prior to finish floor being installed. All work must be completed prior to substantial completion. All floor drains and cleanout locations must be included in this work.
- B. All sanitary soil and waste lines below building 3" and larger shall be internally videotaped at time of substantial completion. All videotaping shall include on-screen date and time, and include audio narration. All videotaping shall be provided by experienced individual in videotaping piping systems. An Owner's Representative shall be present during videotaping. Three copies of the videotape shall be delivered to the Owner for future records.
- C. This work shall be done in the presence of the Owner's Representative, as part of the Contract, to ensure all lines are clear, and any obstruction that may be discovered shall be removed immediately. Rodding shall be accomplished by utilizing the proper rotary head to clear sewer. Pipe sizes 8 inches and larger shall be hydro-flushed.

3.7 SMOKE TESTING

- A. Interior Plumbing Piping:
 - 1. Contractor shall perform smoke testing on all interior sanitary sewer piping and sanitary vent piping above and below floor prior to cover-up.
 - 2. Artificially created smoke used must be a persistent white tracer smoke and produced by thermogenic chemical reaction. All smoke candles or smoke pencils to be used must be non-toxic and EPA approved. Provided by Superior Signal Smoke Candles.
 - All plumbing fixtures must be installed including floor drains with wetted trap seals.
 - 4. Smoke testing shall be performed after completion of any videotaping, rodding or flushing of the sanitary system. Test must be performed prior to ceiling installation in new construction projects. Smoke is usually injected into the building through the two-way cleanout in the main sewer line leaving the building or a plumbing roof vent or fixture. Smoke will travel through the sanitary sewer and vent system and through the air spaces in the sewer lines and emanate from

any leaks in the system. The smoke must reach the last roof vent in the system to indicate the entire system has been completely filled with smoke. The smoke must travel the full length of the piping system. Contractor must provide manpower as necessary to visually trace the flow of smoke through the wall cavities, annular floor/ceiling spaces, inject the smoke, observe the roof vents and to identify the integrity problems.

- 5. Contractor shall provide a detailed list of findings and a drawing indicating the location, fixture type, type and size of pipe, and or description of type of problems found.
- 6. Typical findings from indoor smoke testing may include:
 - a. Dry traps in floor drains
 - b. Improperly capped sewer lines or vents
 - c. Broken sewer lines or vents
 - d. Cross connected sewer vents and drains
 - e. The drawing of air emanating from sewer vents into intakes of air exchange systems
 - f. Poorly glued pipe joints
 - g. Loose no-hub couplings
- 7. An Owner's Representative shall be present during smoke testing.

END OF SECTION

SECTION 22 15 00

SHOP COMPRESSED AIR SYSTEM

PART 1 - GENERAL

1.1 WORK INCLUDED

A. Furnish and install compressors, pipe and fittings for compressed air systems.

1.2 RELATED WORK

- A. Division 22 Plumbing
 - 1. Control air compressors and control air piping; Control Section.
 - 2. Pipe and Pipe Fittings.
 - 3. Valves, Strainers and Vents.
 - 4. Vibration Isolation.
- B. Division 26 Electrical Motors.

PART 2 - PRODUCTS

2.1 PIPE AND FITTINGS

A. Provide ASTM B 88, Type L, hard-drawn copper water tube with wrought copper fittings, ANSI B16.22.

2.2 UNIONS AND FLANGES

A. Unions. Provide unions that are 150 lb. standard (300 lb. WOG) galvanized malleable iron, ground joint unions with bronze seat. Use flange joints for pipe larger than 3 inches in diameter.

2.3 VALVES

- A. Pressure Reducing. Provide a spring-loaded valve, with semi-steel body and stainless steel inner valve, disc seat and disc spring, adjusting spring of corrosion-resistant steel and synthetic composition diaphragm.
- B. Pressure Relief. Furnish spring-loaded, bronze body relief valves with enclosed spring. Use seats specially ground for compressed air service, with trip lever.
- C. Gate Valves. 3 inch and larger, 125 lb., OS&Y, IBBM.
- D. Ball Valves. 1/2 inch through 2 inch, 150 lb., full port, bronze body, blow-out proof stem.
- E. Check Valves. 2 inch & smaller, 300 lb. Bronze; 2-1/2 inch & larger, provide nonslam wafer type.

2.4 ACCESSORIES

A. Moisture Traps. Use float-operated moisture traps rated at 200 psi. Provide unit with 30 inch x 30 inch mesh screen, a full 1/4 inch drain orifice and self-cleaning drain seat. Traps used on air compressor drier, receiver and piping system shall be by same manufacturer. Install traps where shown and at all low points in the system.

DOUGLAS P

- B. Quick Couplings. Provide with ½-inch male pipe end with locking sleeve ½ inch standard hose end.
- C. Filter. Provide 200 psig, clear bowl filter, with reusable felt filtering element capable of removing 5 micron-size particles.
- D. Electronic Drain Valve: Automatic drain valve for moisture removal from receiver tank, 120 vac, Maximum Pressure 200 PSI, Adjustable Drain Cycle 5 min. to 24 hours with non-adjustable purge time 3.5 seconds. Dynaquip Controls AD1B ½"; Grainger Item #6W175.

PART 3 - EXECUTION

3.1 DRIP LEGS

A. Install a capped drip leg 6 inches long at the base of the vertical riser and at the ends of main piping runs with a valved drain. Pipe to the nearest floor or hub drain.

3.2 TESTING

A. Apply an air pressure 1-1/2 times the operating pressure, 150 psig minimum, to the system and test joints with a soap solution while lines are under pressure. Repair leaks and retest the system until pressure is maintained for four hours minimum.

END OF SECTION

SECTION 22 20 00

PLUMBING PIPE AND PIPE FITTINGS - GENERAL

1.1 WORK INCLUDED

A. Furnish and install pipe and pipe fittings for piping systems specified in Division 22 - Plumbing.

1.2 RELATED WORK

- A. Division 22 Plumbing
 - 1. Earthwork
 - 2. Valves, Strainers and Vents
 - 3. Insulation
 - 4. Other Piping Sections

PART 2 - PRODUCTS

2.1 PIPE AND FITTINGS

A. The particular type of pipe and fittings for each system is specified in the individual sections.

2.2 JOINTS

- A. Make screwed joints using machine cut USASI taper pipe threads. Apply a suitable joint compound to the male threads only. Ream the pipe to full inside diameter after cutting. All-thread nipples are not permitted.
- B. Dissimilar Metals. Make joints between copper and steel pipe and equipment using insulating unions or couplings such as Crane Company #1259; EPCO as manufactured by EPCO Sales, Inc.; or an approved equal.

C. Solder joints.

- 1. Prior to making joints, cut pipe square and ream to full inside diameter. Clean exterior of pipe and socket. Apply a thin coat of suitable fluxing compound to both pipe and socket, and fit parts together immediately.
- 2. Heat assembled joint only as required to cause the solder to flow. Run the joint full, slightly beaded on the outside, and wipe to remove excess solder.
- 3. Use silver brazing alloy or Sil-Fos on underground water entry piping. Use lead free solder on all other copper piping.
- D. Make welded joints as recommended by the standards of the American Welding Society. Ensure complete penetration of deposited metal with base metal. Provide filler metal suitable for use with base metal. Keep inside of fittings free from globules of weld metal. The use of mitered joints is not approved.

E. Flanged.

- 1. Prior to installation of bolts, center and align flanged joints to prevent mechanical pre-stressing of flanges, pipe or equipment. Align bolt holes to straddle the vertical, horizontal or north-south centerline. Do not exceed 3/64" per foot inclination of the flange face from true alignment.
- 2. Use flat-face companion flanges only with flat-faced fittings, valves or equipment.

DOUGLAS P

- Otherwise, use raised-face flanges.
- 3. Install gaskets suitable for the intended service and factory cut to proper dimensions. Secure with manufacturers recommended gasket cement.
- 4. Use ANSI nuts and bolts, galvanized or black to match flange material. Use ANSI 316 stainless steel nuts and bolts underground. Tighten bolts progressively to prevent unbalanced stress. Draw bolts tight to ensure proper seating of gaskets.
- 5. Use carbon steel flanges conforming to ANSI B16.5 with pipe materials conforming to ASTM A 105 Grade II or ASTM A 108, Grade II, ASTM A 53, Grade B. Use slip-on type flanges on pipe only. Use welding neck type flanges on all fittings. Weld slip-on flanges inside and outside.
- 6. Keep flange covers on equipment while fabricating piping. Remove when ready to install in system.
- F. No Hub. Hubless joints shall be made with wide body, neoprene sealing sleeve with stainless steel sleeve, coupling joints conforming to ASTM C 1277.
 - 1. 4" pipe size and smaller coupling housing minimum of 3" width; 24 gauge Series 300 stainless steel with hi-torque clamps; neoprene coupling gasket.
 - 2. 6" through 10" pipe size coupling housing minimum of 4" width.
 - 3. Tighten clamps to within manufacturer's tolerances using preset torque wrench.
- G. Mechanical Joints. Provide a stuffing box type mechanical joint adapted to use gasket, cast iron gland and bolts. Coat bolts with bitumastic enamel. Use joint parts similar in design to one of the following:
 - 1. Doublex Simplex Joint manufactured by the American Cast Iron Pipe Company, Birmingham, Alabama.
 - 2. U.S. joints manufactured by the United States Pipe and Foundry Company, Burlington, New Jersey.
 - 3. Boltite Joint manufactured by the McWane Cast Iron Pipe Company, Birmingham, Alabama.
 - 4. Flexlamp manufactured by the National Cast Iron Pipe Company, Birmingham, Alabama.
- H. Compression Joints for Cast Iron Water Pipe. Use Beltite, Tyton or Grip-Tite compression joints. Install in accordance with the manufacturer's recommendations for compression joints. Provide adequate concrete thrust blocks at changes of direction, as recommended by the manufacturer.
- I. Compression Gasket System. Bell and spigot cast iron pipe 4" and smaller, use flax-base lubricant, Tyler Ty-Seal Lubricant or Charlotte Regular Lubricant. 6" and larger use a neoprene base lubricant, Charlotte Adhesive Lubricant.
- J. Ring-Tite Joints: Furnish joints for installation according to manufacturer's recommendations. Provide adequate concrete thrust blocks at changes in direction, as recommended by manufacturer.
- K. Ball Joints. Where shown, provide flexible ball joints, made of carbon steel. Ball joints must have 15° of angular flexibility. Use welded or flanged ends, as required. Furnish with 11N gaskets.
- L. Mechanically Formed Tee Fitting. Mechanically extracted collars shall be formed in a continuous operation consisting of drilling a pilot hole and drawing out the tube surface to form a collar having a height not less than three (3) times the thickness of the branch wall. The branch tube shall be notched to conform with the inner curve of the run tube and shall have two (2) dimple / depth stops to insure that penetration of the branch tube into the collar is of sufficient depth for brazing and that the branch tube does not obstruct the flow in the main line tube. Dimple depth stops shall be in line with the run tube. The

- second dimple shall be one quarter (1/4) inch above the first and shall serve as a visual point of observation. All joints shall be brazed with silver brazing alloy or Sil-Fos. Soft soldered joints shall not be allowed.
- M. Press fittings for copper pipe 1/2" to 4": Copper press fittings shall conform to the material and sizing requirements of ASTM B16.18 or ASME B16.22. O-rings for copper press fittings shall be EPDM. Pro-Press System manufactured by VIEGA. The system intended for use shall be approved by submittal. Systems from various manufacturers may vary in technology. The field personnel shall carry training credentials from the approved manufacturer for the project. Mixing of fittings from different manufacturers is strictly prohibited.
- N. Press fittings for steel pipe ½" to 2": Where accepted by local code for specific applications, Cold Press Mechanical Joint Fittings shall conform to material requirements of ASTM A420 or ASME B16.3 and performance criteria of ANSI/CSA LC4. Sealing system shall be EPDM or HNBR as appropriate for a defined application. MegaPress system manufactured by VIEGA or approved equal and include "Smart Connect" assurance that unpressed fittings will not hold pressure. The system intended for use shall be approved by submittal. Systems from various manufacturers may vary in technology. The field personnel shall carry training credentials from the approved manufacturer for the project. Mixing of fittings from different manufacturers is strictly prohibited.

2.3 UNIONS

- A. Use 150 lb. standard (300 lb. WOG) malleable iron, ground joint unions with bronze seat. Provide flanged joints on piping 2-1/2" and larger.
 - Where pipe materials of different types join, use a dielectric union. Union shall be threaded, solder or as required for its intended use.

2.4 BRANCH CONNECTIONS

- A. Pipe 2" and Smaller. For threaded piping, use straight size reducing tee. When branch is smaller than header, a nipple and reducing coupling or swagged nipple may be used.
- B. 2-1/2" through 36": For welding piping, when branch size is the same as header size, use welding tee. Use Weld-o-let when branch is smaller than header. For threaded branch connections, use 3000 lb. full coupling or Thread-o-let welded to header.

2.5 GASKETS

- A. High Temperature Piping. Provide 1/16" thick ring gaskets of aramid reinforced SBR such as Garlock #3200 or 3400 or equal by Advanced Products and Systems.
- B. Other Piping. Provide ring rubber gaskets, Garlock #7992 or equal by Advanced Products and Systems. Use 1/8" thick cloth reinforced neoprene gaskets. For smaller than 6", use 1/16" thick gasket.

2.6 FLOORS AND CEILING PLATES

A. Provide chrome-plated floor and ceiling plates around pipes exposed to view when passing through walls, floors, partitions, or ceilings in finished areas; size plates to fit pipe or insulation and lock in place.

2.7 DOMESTIC MANUFACTURE

A. All piping material, pipe and pipe fittings shall be manufactured in the United States of America unless specifically named in these specifications.

PART 3 - EXECUTION

3.1 PIPE FABRICATION AND INSTALLATION

- A. Make piping layout and installation in the most advantageous manner possible with respect to headroom, valve access, opening and equipment clearance, and clearance for other work. Give particular attention to piping in the vicinity of equipment. Preserve the required minimum access clearances to various equipment parts, as recommended by the equipment manufactured, for maintenance.
- B. Cut all pipes to measurement determined at the site. After cutting pipe, remove burrs by reaming. Bevel plain ends of ferrous pipe.
- C. Install piping neatly, free from unnecessary traps and pockets. Work into place without springing or forcing. Use fittings to make changes in direction. Field bending and mitering is prohibited. Make connections to equipment using flanged joints, unions or couplings. Make reducing connections with reducing fittings only.
- D. Install piping without tapping out of the bottom of pipe.
- E. Press Connections: Copper and steel press fittings ½" through 4" shall be applied in accordance with the manufacturer's installation instructions. The tubing/pipe shall be fully inserted into the fitting and the tubing/pipe marked at the shoulder of the fitting. The fitting alignment shall be checked against the mark on the tubing/pipe to assure the tubing/pipe is fully engaged (inserted) in the fitting. The joints shall be pressed using the tool approved by the manufacturer. If soldering (thread adapters, etc.) near press fittings, take precautions to not damage the O-ring fittings. Maintain three pipe diameters or use a cooling agent. Viega-"Pro-Press".

3.2 WELD

- A. Weld and fabricate piping in accordance with ANSI Standard B31.1, latest edition, Code for Pressure Piping.
- B. Align piping and equipment so that no part is offset more than 1/16". Set fittings and joints square and true, and preserve alignment during welding operation. Use of alignment rods inside pipe is prohibited.
- C. Do not permit any weld to project within the pipe so as to restrict flows. Tack welds, if used, must be of the same material and made by the same procedure as the completed weld. Otherwise, remove tack welds during welding operation.
- D. Do not split, bend, flatten or otherwise damage piping before, during or after installation.
- E. Remove dirt, scale and other foreign matter from inside piping before tying into existing piping sections, fittings, valves or equipment.
- F. Bevel ends of ferrous pipe.

3.3 OFFSETS AND FITTINGS

A. Due to the small scale of drawings, the indication of offsets and fittings is not possible. Investigate the structural and finish conditions affecting the work and take steps required

to meet these conditions.

B. Install pipe close to walls, ceilings and columns so pipe will occupy minimum space. Provide proper spacing for insulation coverings, removal of pipe, special clearances, and offsets and fittings.

3.4 SECURING AND SUPPORTING

- A. Support piping to maintain line and grade, with provision for expansion and contraction. Use approved clevis-type or trapeze-type hangers connected to structural members of the building. Single pipe runs to be supported by approved clevis type hangers. Multiple pipe runs to be supported by approved trapeze type hangers. Do not support piping from other piping or structural joist bridging.
- B. Provide supports both sides of elbows for pipe 6" and larger.
- C. Support vertical risers with steel strap pipe clamps of approved design and size, supported at each floor. Support piping assemblies in chases so they are rigid and self-supported before the chase is closed. Provide structural support for piping penetrating chase walls to fixtures. On cold water pipe, supports shall be outside the insulation.
- D. Where insulation occurs, design hangers to protect insulation from damage. Pipe saddles and insulation shields, where required, are specified in the appropriate insulation section and are sized in accordance with the schedule on the drawings.
- E. Install trapeze hangers, properly sized, to support the intended load without distortion.
- F. Use electro-galvanized or zinc plated threaded rods, nuts, washers and hangers.
- G. At outdoor locations, all supports, brackets and structural members shall be hot-dipped galvanized.
- H. Support spacing: As recommended by the project structural engineer and support manufacturer, but not more than listed below. Not to exceed spacing requirements of smallest pipe.

	Copper & Steel Max.	Cast Iron Max.	Minimum Rod
Pipe Size	Support Spacing, Feet	Support Spacing, Ft.	Diameter,
			1
			n
			С
			h
			е
			S
1" & smaller	6		3/8
1-1/4" & 1-1/2"	8	5	3/8
2"	10	5	3/8
3"	10	5	1/2
4" & 5"	10	5	5/8
6" and above	10	5	3/4

3.5 PIPE SUPPORTS

A. Provide P1001 or P 5000 Unistrut metal framing members and appurtenances for pipe support. Hot-dip galvanize members and appurtenances when located outside. Sagging

- of pipes or supports is not acceptable.
- B. Adjustable clevis hangers shall be used for single pipe supports; Anvil Fig. 260. When oversized clevis is used, a nipple shall be placed over the clevis bolt as a spacer to assure that the lower U-strap will not move in on the bolt. Provide adjustable clevis with a nut / washer above and below the hanger on the support rod. Ring type clevis hangers are not acceptable.
- C. Provide Anvil Figure 45 galvanized or primed and painted channel assembly for trapeze hangers.

3.6 PIPE SUPPORTS ON ROOF

A. Support gas pipe on roof with Portable Pipe Hanger Model PP-10 with roller and fully adjustable height throughout pipe run. Base material shall be high density / high impact polypropylene with UV inhibitors and anti-oxidants. Provide with hot dip galvanized rod finish and framing. Nuts and washers shall be hot dip galvanized.

3.7 ANCHORS

A. Provide anchors as required. Use pipe anchors consisting of heavy steel collars with lugs and bolts for clamping to pipe and attaching anchor braces. Install anchor braces in the most effective manner to secure desired results. Do not install supports, anchors or similar devices where they will damage construction during installation or because of the weight or the expansion of the pipe. When possible, install sleeves in structural concrete prior to pouring of concrete.

3.8 FLOOR PENETRATIONS

A. At locations where pipe passes through floors, provide watertight concrete curb around penetration.

3.9 PIPE SLEEVES

- A. Sleeves through masonry and concrete construction:
 - 1. Fabricate sleeves of Schedule 40 galvanized steel pipe.
 - 2. Size sleeve large enough to allow for movement due to expansion and to provide continuous insulation.
- B. Sleeves through gypsum wall construction.
 - 1. Fabricate sleeves of 16 gauge galvanized sheet metal.
- C. Sleeves through elevated slab construction.
 - Fabricate sleeves of Schedule 40 galvanized steel pipe with welded center flange in floor.
- D. Extend each sleeve through the floor or wall. Cut the sleeve flush with each wall surface. Sleeves through floors shall extend 2" above floor lines for waterproofing purposes. Slab on grade floors shall not be sleeved except where penetrating waterproofing membrane or insect control is required.
- E. Caulk sleeves water and air tight. Seal annular space between pipes and sleeves with mastic compound to make the space water and air tight.
- F. For sleeves below grades in outside walls, provide Thunderline Link-Seal or Advance Product and System Interlynx, with 316 stainless steel nuts and bolts, with cast iron

- pressure plate.
- G. Provide chrome plated escutcheon plates on pipes passing through walls, floors or ceilings exposed to view. At exterior walls, stainless steel sheet metal is to be used.
- H. For sleeves through fire and smoke rated walls, seal with a UL through-penetration firestop, rated to maintain the integrity of the time rated construction. Install in accordance with the manufacturer's installation instructions. Comply with UL and NFPA standards for the installation of firestops. Refer to Architectural drawings for all fire and smoke rated partitions, walls, floors, etc.

3.10 ISOLATION VALVES

A. Provide piping systems with line size shutoff valves located at the risers, at main branch connections to mains for equipment, to isolate central plant, and at other locations.

3.11 DRAIN VALVES

A. Install drain valves at low points of water piping systems so that these systems can be entirely drained. Install a line size drain valve for pipes smaller than 2" unless indicated otherwise. For pipes 2-1/2" and larger, provide 2" drain valves unless indicated otherwise. Drain valves shall be plugged when not in use and at completion.

3.12 CLEANING OF PIPING SYSTEMS

- A. General cleaning of piping systems. Purge pipe of construction debris and contamination before placing the systems in service. Provide and install temporary connections as required to clean, purge and circulate.
- B. Install temporary strainers at the inlet of pumps and other equipment as necessary where permanent strainers are not indicated. Keep strainers in service until the equipment has been tested, then remove either entire strainer or straining element only. Fit strainers with a line size blow down ball valve and pipe to nearest drain. Blow down strainers, remove and clean as frequently as necessary.
- C. Phase One: Initial flushing of system. Remove loose dirt, mill scale, weld beads, rust and other deleterious substances without damage to system components. Open valves, drains, vents and strainers at all system levels during flushing procedures. Flush until "potable water clear" and particles larger than 5 microns are removed.
- D. Connect dead-end supply and return headers, even if not shown on the drawings, and provide terminal drains in bottom of pipe end caps or blind flanges.
- E. Dispose of water in approved manner.
- F. Phase Two: Cleaning of Piping Systems. Remove, without chemical or mechanical damage to any system component, adherent dirt (organic soil), oil, grease, (hydrocarbons), soldering flux, mill varnish, piping compounds, rust (iron oxide) and other deleterious substances not removed by initial flushing. Flush system and replace with clean water.
- G. Phase Three: Final flushing and rinsing: Flush and rinse until "potable water clear" and particles larger than 5 microns are removed. Operate valves to dislodge any debris in valve body. Dispose of water in approved manner.
- H. Submit status reports upon completion of each phase of work on each system.

3.13 TESTING

- A. Test piping after installation with water hydrostatic pressure of 1-1/2 times operating pressure (150 psig minimum) and carefully check for leaks. Repair leaks and retest system until proven watertight.
- B. Do not insulate or conceal piping systems until tests are satisfactorily complete.
- C. If any leaks or other defects are observed, suspend the test and correct the condition at once. Repeat testing until leaks are eliminated and the full test period is achieved.
- D. The satisfactory completion of testing does not relieve the Contractor of responsibility for ultimate proper and satisfactory operation of piping systems and their accessories.

3.14 PIPE MARKERS

- A. Identify interior exposed piping and piping in accessible chases or plenums with Opti-Code Brady Pressure Sensitive Adhesive Pipe Markers, consisting of pipe marker and direction of flow arrow tape. Clean pipe prior to installation. Background colors of markers, arrows and tape for each type of system shall be the same. Meet ANSI/OSHA standards and clearly identify each system. Provide minimum 2-1/4-inch letters through 4-inch pipe and 4-inch letters for 5-inch pipe and larger.
- B. Identify exterior and mechanical room piping with Snap Around pipe markers through 4-inch pipe and Strap Around markers 5-inch pipe and larger. Pipe markers consisting of pipe marker and direction of flow arrow tape; background colors of markers, arrows and type for each type of system shall be the same. Meet ANSI / OSHA standards and clearly identify each system. Provide minimum 2-1/4-inch letters through 4-inch pipe and 4-inch letters for 5-inch pipe and larger.
- C. Install identification in the following locations:
 - 1. Both sides of penetrations through walls, floors and ceilings.
 - 2. Close to valves or flanges.
 - 3. Intervals on straight pipe runs not to exceed 50 feet
 - 4. Apply marker where view is obstructed.
- D. Pipe markers shall meet or exceed the specifications of the ASME A13.1 "Scheme for Identification of Piping Systems".

END OF SECTION